

Python Prompt Toolkit 3.0

prompt_toolkit is a library for building powerful interactive command line
and terminal applications in Python.

It can be a very advanced pure Python replacement for GNU readline [http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html], but it can also be
used for building full screen applications.

[image: _images/ptpython-2.png]
Some features:

	Syntax highlighting of the input while typing. (For instance, with a Pygments lexer.)

	Multi-line input editing.

	Advanced code completion.

	Selecting text for copy/paste. (Both Emacs and Vi style.)

	Mouse support for cursor positioning and scrolling.

	Auto suggestions. (Like fish shell [http://fishshell.com/].)

	No global state.

Like readline:

	Both Emacs and Vi key bindings.

	Reverse and forward incremental search.

	Works well with Unicode double width characters. (Chinese input.)

Works everywhere:

	Pure Python. Runs on all Python versions starting at Python 3.6.
(Python 2.6 - 3.x is supported in prompt_toolkit 2.0; not 3.0).

	Runs on Linux, OS X, OpenBSD and Windows systems.

	Lightweight, the only dependencies are Pygments and wcwidth.

	No assumptions about I/O are made. Every prompt_toolkit application should
also run in a telnet/ssh server or an asyncio [https://docs.python.org/3/library/asyncio.html] process.

Have a look at the gallery to get an idea of what is possible.

Getting started

Go to getting started and build your first prompt.
Issues are tracked on the Github project [https://github.com/prompt-toolkit/python-prompt-toolkit].

Thanks to:

A special thanks to all the contributors [https://github.com/prompt-toolkit/python-prompt-toolkit/graphs/contributors]
for making prompt_toolkit possible.

Also, a special thanks to the Pygments [http://pygments.org/] and wcwidth [https://github.com/jquast/wcwidth] libraries.

Table of contents

	Gallery
	Ptpython, a Python REPL

	Pyvim, a Vim clone

	Pymux, a terminal multiplexer (like tmux) in Python

	Getting started
	Installation

	Several use cases: prompts versus full screen terminal applications

	A simple prompt

	Learning prompt_toolkit

	Upgrading
	Upgrading to prompt_toolkit 2.0

	Upgrading to prompt_toolkit 3.0

	Printing (and using) formatted text
	Printing plain text

	Formatted text

	Asking for input (prompts)
	Hello world

	The PromptSession object

	Syntax highlighting

	Colors

	Autocompletion

	Input validation

	History

	Auto suggestion

	Adding a bottom toolbar

	Adding a right prompt

	Vi input mode

	Adding custom key bindings

	Other prompt options

	Cursor shapes

	Prompt in an asyncio application

	Reading keys from stdin, one key at a time, but without a prompt

	Dialogs
	Message box

	Input box

	Yes/No confirmation dialog

	Button dialog

	Radio list dialog

	Checkbox list dialog

	Styling of dialogs

	Styling reference sheet

	Progress bars
	Simple progress bar

	Multiple parallel tasks

	Adding a title and label

	Formatting the progress bar

	Adding key bindings and toolbar

	Building full screen applications
	A simple application

	I/O objects

	The layout

	Key bindings

	More about the Window class

	More about buffers and BufferControl

	Tutorials
	Tutorial: Build an SQLite REPL

	Advanced topics
	More about key bindings

	More about styling

	Filters

	The rendering flow

	Running on top of the asyncio event loop

	Unit testing

	Input hooks

	Architecture

	The rendering pipeline

	Reference
	Application

	Formatted text

	Buffer

	Selection

	Clipboard

	Auto completion

	Document

	Enums

	History

	Keys

	Style

	Shortcuts

	Validation

	Auto suggestion

	Renderer

	Lexers

	Layout

	Widgets

	Filters

	Key binding

	Eventloop

	Input

	Output

	Data structures

	Patch stdout

	Related projects

Indices and tables

	Index

	Module Index

	Search Page

Prompt_toolkit was created by Jonathan Slenders [http://github.com/prompt-toolkit/].

Gallery

Showcase, demonstrating the possibilities of prompt_toolkit.

Ptpython, a Python REPL

The prompt:

[image: ../_images/ptpython.png]
The configuration menu of ptpython.

[image: ../_images/ptpython-menu.png]
The history page with its help. (This is a full-screen layout.)

[image: ../_images/ptpython-history-help.png]

Pyvim, a Vim clone

[image: ../_images/pyvim.png]

Pymux, a terminal multiplexer (like tmux) in Python

[image: ../_images/pymux.png]

Getting started

Installation

pip install prompt_toolkit

For Conda, do:

conda install -c https://conda.anaconda.org/conda-forge prompt_toolkit

Several use cases: prompts versus full screen terminal applications

prompt_toolkit was in the first place meant to be a replacement for readline.
However, when it became more mature, we realised that all the components for
full screen applications are there and prompt_toolkit is very capable of
handling many use situations. Pyvim [http://github.com/prompt-toolkit/pyvim] and pymux [http://github.com/prompt-toolkit/pymux] are examples of full screen
applications.

[image: ../_images/pyvim.png]
Basically, at the core, prompt_toolkit has a layout engine, that supports
horizontal and vertical splits as well as floats, where each “window” can
display a user control. The API for user controls is simple yet powerful.

When prompt_toolkit is used as a readline replacement, (to simply read some
input from the user), it uses a rather simple built-in layout. One that
displays the default input buffer and the prompt, a float for the
autocompletions and a toolbar for input validation which is hidden by default.

For full screen applications, usually we build a custom layout ourselves.

Further, there is a very flexible key binding system that can be programmed for
all the needs of full screen applications.

A simple prompt

The following snippet is the most simple example, it uses the
prompt() function to asks the user for input
and returns the text. Just like (raw_)input.

from prompt_toolkit import prompt

text = prompt('Give me some input: ')
print('You said: %s' % text)

Learning prompt_toolkit

In order to learn and understand prompt_toolkit, it is best to go through the
all sections in the order below. Also don’t forget to have a look at all the
examples [https://github.com/prompt-toolkit/python-prompt-toolkit/tree/master/examples]
in the repository.

	First, learn how to print text. This is important,
because it covers how to use “formatted text”, which is something you’ll use
whenever you want to use colors anywhere.

	Secondly, go through the asking for input section.
This is useful for almost any use case, even for full screen applications.
It covers autocompletions, syntax highlighting, key bindings, and so on.

	Then, learn about Dialogs, which is easy and fun.

	Finally, learn about full screen applications and read through the advanced topics.

Upgrading

Contents:

	Upgrading to prompt_toolkit 2.0

	Upgrading to prompt_toolkit 3.0

Upgrading to prompt_toolkit 2.0

Prompt_toolkit 2.0 is not compatible with 1.0, however you probably want to
upgrade your applications. This page explains why we have these differences and
how to upgrade.

If you experience some difficulties or you feel that some information is
missing from this page, don’t hesitate to open a GitHub issue for help.

Why all these breaking changes?

After more and more custom prompt_toolkit applications were developed, it
became clear that prompt_toolkit 1.0 was not flexible enough for certain use
cases. Mostly, the development of full screen applications was not really
natural. All the important components, like the rendering, key bindings, input
and output handling were present, but the API was in the first place designed
for simple command line prompts. This was mostly notably in the following two
places:

	First, there was the focus which was always pointing to a
Buffer (or text input widget), but in full
screen applications there are other widgets, like menus and buttons which
can be focused.

	And secondly, it was impossible to make reusable UI components. All the key
bindings for the entire applications were stored together in one
KeyBindings object, and similar, all
Buffer objects were stored together in one
dictionary. This didn’t work well. You want reusable components to define
their own key bindings and everything. It’s the idea of encapsulation.

For simple prompts, the changes wouldn’t be that invasive, but given that there
would be some, I took the opportunity to fix a couple of other things. For
instance:

	In prompt_toolkit 1.0, we translated \r into \n during the input
processing. This was not a good idea, because some people wanted to handle
these keys individually. This makes sense if you keep in mind that they
correspond to Control-M and Control-J. However, we couldn’t fix this
without breaking everyone’s enter key, which happens to be the most important
key in prompts.

Given that we were going to break compatibility anyway, we changed a couple of
other important things that effect both simple prompt applications and
full screen applications. These are the most important:

	We no longer depend on Pygments for styling. While we like Pygments, it was
not flexible enough to provide all the styling options that we need, and the
Pygments tokens were not ideal for styling anything besides tokenized text.

Instead we created something similar to CSS. All UI components can attach
classnames to themselves, as well as define an inline style. The final style is
then computed by combining the inline styles, the classnames and the style
sheet.

There are still adaptors available for using Pygments lexers as well as for
Pygments styles.

	The way that key bindings were defined was too complex.
KeyBindingsManager was too complex and no longer exists. Every set of key
bindings is now a
KeyBindings object and multiple of these
can be merged together at any time. The runtime performance remains the same,
but it’s now easier for users.

	The separation between the CommandLineInterface and
Application class was confusing and in
the end, didn’t really had an advantage. These two are now merged together in
one Application class.

	We no longer pass around the active CommandLineInterface. This was one of
the most annoying things. Key bindings need it in order to change anything
and filters need it in order to evaluate their state. It was pretty annoying,
especially because there was usually only one application active at a time.
So, Application became a TaskLocal.
That is like a global variable, but scoped in the current coroutine or
context. The way this works is still not 100% correct, but good enough for
the projects that need it (like Pymux), and hopefully Python will get support
for this in the future thanks to PEP521, PEP550 or PEP555.

All of these changes have been tested for many months, and I can say with
confidence that prompt_toolkit 2.0 is a better prompt_toolkit.

Some new features

Apart from the breaking changes above, there are also some exciting new
features.

	We now support vt100 escape codes for Windows consoles on Windows 10. This
means much faster rendering, and full color support.

	We have a concept of formatted text. This is an object that evaluates to
styled text. Every input that expects some text, like the message in a
prompt, or the text in a toolbar, can take any kind of formatted text as input.
This means you can pass in a plain string, but also a list of (style,
text) tuples (similar to a Pygments tokenized string), or an
HTML object. This simplifies many
APIs.

	New utilities were added. We now have function for printing formatted text
and an experimental module for displaying progress bars.

	Autocompletion, input validation, and auto suggestion can now either be
asynchronous or synchronous. By default they are synchronous, but by wrapping
them in ThreadedCompleter,
ThreadedValidator or
ThreadedAutoSuggest, they will become
asynchronous by running in a background thread.

Further, if the autocompletion code runs in a background thread, we will show
the completions as soon as they arrive. This means that the autocompletion
algorithm could for instance first yield the most trivial completions and then
take time to produce the completions that take more time.

Upgrading

More guidelines on how to upgrade will follow.

AbortAction has been removed

Prompt_toolkit 1.0 had an argument abort_action for both the
Application class as well as for the prompt function. This has been
removed. The recommended way to handle this now is by capturing
KeyboardInterrupt and EOFError manually.

Calling create_eventloop usually not required anymore

Prompt_toolkit 2.0 will automatically create the appropriate event loop when
it’s needed for the first time. There is no need to create one and pass it
around. If you want to run an application on top of asyncio (without using an
executor), it still needs to be activated by calling
use_asyncio_event_loop() at the beginning.

Pygments styles and tokens

prompt_toolkit 2.0 no longer depends on Pygments [http://pygments.org/], but
that definitely doesn’t mean that you can’t use any Pygments functionality
anymore. The only difference is that Pygments stuff needs to be wrapped in an
adaptor to make it compatible with the native prompt_toolkit objects.

	For instance, if you have a list of (pygments.Token, text) tuples for
formatting, then this needs to be wrapped in a
PygmentsTokens object. This is an
adaptor that turns it into prompt_toolkit “formatted text”. Feel free to keep
using this.

	Pygments lexers need to be wrapped in a
PygmentsLexer. This will convert the list of
Pygments tokens into prompt_toolkit formatted text.

	If you have a Pygments style, then this needs to be converted as well. A
Pygments style class can be converted in a prompt_toolkit
Style with the
style_from_pygments_cls() function
(which used to be called style_from_pygments). A Pygments style
dictionary can be converted using
style_from_pygments_dict().

Multiple styles can be merged together using
merge_styles().

Wordcompleter

WordCompleter was moved from
prompt_toolkit.contrib.completers.base.WordCompleter to
prompt_toolkit.completion.word_completer.WordCompleter.

Asynchronous autocompletion

By default, prompt_toolkit 2.0 completion is now synchronous. If you still want
asynchronous auto completion (which is often good thing), then you have to wrap
the completer in a ThreadedCompleter.

Filters

We don’t distiguish anymore between CLIFilter and SimpleFilter, because the
application object is no longer passed around. This means that all filters are
a Filter from now on.

All filters have been turned into functions. For instance, IsDone became
is_done and HasCompletions became has_completions.

This was done because almost all classes were called without any arguments in
the __init__ causing additional braces everywhere. This means that
HasCompletions() has to be replaced by has_completions (without
parenthesis).

The few filters that took arguments as input, became functions, but still have
to be called with the given arguments.

For new filters, it is recommended to use the @Condition decorator,
rather then inheriting from Filter. For instance:

from prompt_toolkit.filters import Condition

@Condition
def my_filter();
 return True # Or False

Upgrading to prompt_toolkit 3.0

There are two major changes in 3.0 to be aware of:

	First, prompt_toolkit uses the asyncio event loop natively, rather then using
its own implementations of event loops. This means that all coroutines are
now asyncio coroutines, and all Futures are asyncio futures. Asynchronous
generators became real asynchronous generators as well.

	Prompt_toolkit uses type annotations (almost) everywhere. This should not
break any code, but its very helpful in many ways.

There are some minor breaking changes:

	The dialogs API had to change (see below).

Detecting the prompt_toolkit version

Detecting whether version 3 is being used can be done as follows:

from prompt_toolkit import __version__ as ptk_version

PTK3 = ptk_version.startswith('3.')

Fixing calls to get_event_loop

Every usage of get_event_loop has to be fixed. An easy way to do this is by
changing the imports like this:

if PTK3:
 from asyncio import get_event_loop
else:
 from prompt_toolkit.eventloop import get_event_loop

Notice that for prompt_toolkit 2.0, get_event_loop returns a prompt_toolkit
EventLoop object. This is not an asyncio eventloop, but the API is
similar.

There are some changes to the eventloop API:

	version 2.0

	version 3.0 (asyncio)

	loop.run_in_executor(callback)

	loop.run_in_executor(None, callback)

	loop.call_from_executor(callback)

	loop.call_soon_threadsafe(callback)

Running on top of asyncio

For 2.0, you had tell prompt_toolkit to run on top of the asyncio event loop.
Now it’s the default. So, you can simply remove the following two lines:

from prompt_toolkit.eventloop.defaults import use_asyncio_event_loop
use_asyncio_event_loop()

There is a few little breaking changes though. The following:

For 2.0
result = await PromptSession().prompt('Say something: ', async_=True)

has to be changed into:

For 3.0
result = await PromptSession().prompt_async('Say something: ')

Further, it’s impossible to call the prompt() function within an asyncio
application (within a coroutine), because it will try to run the event loop
again. In that case, always use prompt_async().

Changes to the dialog functions

The original way of using dialog boxes looked like this:

from prompt_toolkit.shortcuts import input_dialog

result = input_dialog(title='...', text='...')

Now, the dialog functions return a prompt_toolkit Application object. You have
to call either its run or run_async method to display the dialog. The
async_ parameter has been removed everywhere.

if PTK3:
 result = input_dialog(title='...', text='...').run()
else:
 result = input_dialog(title='...', text='...')

Or

if PTK3:
 result = await input_dialog(title='...', text='...').run_async()
else:
 result = await input_dialog(title='...', text='...', async_=True)

Printing (and using) formatted text

Prompt_toolkit ships with a
print_formatted_text() function that’s meant to
be (as much as possible) compatible with the built-in print function, but on
top of that, also supports colors and formatting.

On Linux systems, this will output VT100 escape sequences, while on Windows it
will use Win32 API calls or VT100 sequences, depending on what is available.

Note

This page is also useful if you’d like to learn how to use formatting
in other places, like in a prompt or a toolbar. Just like
print_formatted_text() takes any kind
of “formatted text” as input, prompts and toolbars also accept
“formatted text”.

Printing plain text

The print function can be imported as follows:

from prompt_toolkit import print_formatted_text

print_formatted_text('Hello world')

You can replace the built in print function as follows, if you want to.

from prompt_toolkit import print_formatted_text as print

print('Hello world')

Note

If you’re using Python 2, make sure to add from __future__ import
print_function. Otherwise, it will not be possible to import a function
named print.

Formatted text

There are several ways to display colors:

	By creating an HTML object.

	By creating an ANSI object that
contains ANSI escape sequences.

	By creating a list of (style, text) tuples.

	By creating a list of (pygments.Token, text) tuples, and wrapping it in
PygmentsTokens.

An instance of any of these four kinds of objects is called “formatted text”.
There are various places in prompt toolkit, where we accept not just plain text
(as a string), but also formatted text.

HTML

HTML can be used to indicate that a
string contains HTML-like formatting. It recognizes the basic tags for bold,
italic and underline: , <i> and <u>.

from prompt_toolkit import print_formatted_text, HTML

print_formatted_text(HTML('This is bold'))
print_formatted_text(HTML('<i>This is italic</i>'))
print_formatted_text(HTML('<u>This is underlined</u>'))

Further, it’s possible to use tags for foreground colors:

Colors from the ANSI palette.
print_formatted_text(HTML('<ansired>This is red</ansired>'))
print_formatted_text(HTML('<ansigreen>This is green</ansigreen>'))

Named colors (256 color palette, or true color, depending on the output).
print_formatted_text(HTML('<skyblue>This is sky blue</skyblue>'))
print_formatted_text(HTML('<seagreen>This is sea green</seagreen>'))
print_formatted_text(HTML('<violet>This is violet</violet>'))

Both foreground and background colors can also be specified setting the fg
and bg attributes of any HTML tag:

Colors from the ANSI palette.
print_formatted_text(HTML('<aaa fg="ansiwhite" bg="ansigreen">White on green</aaa>'))

Underneath, all HTML tags are mapped to classes from a stylesheet, so you can
assign a style for a custom tag.

from prompt_toolkit import print_formatted_text, HTML
from prompt_toolkit.styles import Style

style = Style.from_dict({
 'aaa': '#ff0066',
 'bbb': '#44ff00 italic',
})

print_formatted_text(HTML('<aaa>Hello</aaa> <bbb>world</bbb>!'), style=style)

ANSI

Some people like to use the VT100 ANSI escape sequences to generate output.
Natively, this is however only supported on VT100 terminals, but prompt_toolkit
can parse these, and map them to formatted text instances. This means that they
will work on Windows as well. The ANSI
class takes care of that.

from prompt_toolkit import print_formatted_text, ANSI

print_formatted_text(ANSI('\x1b[31mhello \x1b[32mworld'))

Keep in mind that even on a Linux VT100 terminal, the final output produced by
prompt_toolkit, is not necessarily exactly the same. Depending on the color
depth, it is possible that colors are mapped to different colors, and unknown
tags will be removed.

(style, text) tuples

Internally, both HTML and
ANSI objects are mapped to a list of
(style, text) tuples. It is however also possible to create such a list
manually with FormattedText class.
This is a little more verbose, but it’s probably the most powerful
way of expressing formatted text.

from prompt_toolkit import print_formatted_text
from prompt_toolkit.formatted_text import FormattedText

text = FormattedText([
 ('#ff0066', 'Hello'),
 ('', ' '),
 ('#44ff00 italic', 'World'),
])

print_formatted_text(text)

Similar to the HTML example, it is also
possible to use class names, and separate the styling in a style sheet.

from prompt_toolkit import print_formatted_text
from prompt_toolkit.formatted_text import FormattedText
from prompt_toolkit.styles import Style

The text.
text = FormattedText([
 ('class:aaa', 'Hello'),
 ('', ' '),
 ('class:bbb', 'World'),
])

The style sheet.
style = Style.from_dict({
 'aaa': '#ff0066',
 'bbb': '#44ff00 italic',
})

print_formatted_text(text, style=style)

Pygments (Token, text) tuples

When you have a list of Pygments [http://pygments.org/] (Token, text)
tuples, then these can be printed by wrapping them in a
PygmentsTokens object.

from pygments.token import Token
from prompt_toolkit import print_formatted_text
from prompt_toolkit.formatted_text import PygmentsTokens

text = [
 (Token.Keyword, 'print'),
 (Token.Punctuation, '('),
 (Token.Literal.String.Double, '"'),
 (Token.Literal.String.Double, 'hello'),
 (Token.Literal.String.Double, '"'),
 (Token.Punctuation, ')'),
 (Token.Text, '\n'),
]

print_formatted_text(PygmentsTokens(text))

Similarly, it is also possible to print the output of a Pygments lexer:

import pygments
from pygments.token import Token
from pygments.lexers.python import PythonLexer

from prompt_toolkit.formatted_text import PygmentsTokens
from prompt_toolkit import print_formatted_text

Printing the output of a pygments lexer.
tokens = list(pygments.lex('print("Hello")', lexer=PythonLexer()))
print_formatted_text(PygmentsTokens(tokens))

Prompt_toolkit ships with a default colorscheme which styles it just like
Pygments would do, but if you’d like to change the colors, keep in mind that
Pygments tokens map to classnames like this:

	pygments.Token

	prompt_toolkit classname

	
	Token.Keyword

	Token.Punctuation

	Token.Literal.String.Double

	Token.Text

	Token

	
	"class:pygments.keyword"

	"class:pygments.punctuation"

	"class:pygments.literal.string.double"

	"class:pygments.text"

	"class:pygments"

A classname like pygments.literal.string.double is actually decomposed in
the following four classnames: pygments, pygments.literal,
pygments.literal.string and pygments.literal.string.double. The final
style is computed by combining the style for these four classnames. So,
changing the style from these Pygments tokens can be done as follows:

from prompt_toolkit.styles import Style

style = Style.from_dict({
 'pygments.keyword': 'underline',
 'pygments.literal.string': 'bg:#00ff00 #ffffff',
})
print_formatted_text(PygmentsTokens(tokens), style=style)

to_formatted_text

A useful function to know about is
to_formatted_text(). This ensures that the
given input is valid formatted text. While doing so, an additional style can be
applied as well.

from prompt_toolkit.formatted_text import to_formatted_text, HTML
from prompt_toolkit import print_formatted_text

html = HTML('<aaa>Hello</aaa> <bbb>world</bbb>!')
text = to_formatted_text(html, style='class:my_html bg:#00ff00 italic')

print_formatted_text(text)

Asking for input (prompts)

This page is about building prompts. Pieces of code that we can embed in a
program for asking the user for input. Even if you want to use prompt_toolkit
for building full screen terminal applications, it is probably still a good
idea to read this first, before heading to the building full screen
applications page.

In this page, we will cover autocompletion, syntax highlighting, key bindings,
and so on.

Hello world

The following snippet is the most simple example, it uses the
prompt() function to ask the user for input
and returns the text. Just like (raw_)input.

from prompt_toolkit import prompt

text = prompt('Give me some input: ')
print('You said: %s' % text)

[image: ../_images/hello-world-prompt.png]
What we get here is a simple prompt that supports the Emacs key bindings like
readline, but further nothing special. However,
prompt() has a lot of configuration options.
In the following sections, we will discover all these parameters.

The PromptSession object

Instead of calling the prompt() function, it’s
also possible to create a PromptSession
instance followed by calling its
prompt() method for every input
call. This creates a kind of an input session.

from prompt_toolkit import PromptSession

Create prompt object.
session = PromptSession()

Do multiple input calls.
text1 = session.prompt()
text2 = session.prompt()

This has mainly two advantages:

	The input history will be kept between consecutive
prompt() calls.

	The PromptSession() instance and its
prompt() method take about the
same arguments, like all the options described below (highlighting,
completion, etc…). So if you want to ask for multiple inputs, but each
input call needs about the same arguments, they can be passed to the
PromptSession() instance as well, and they
can be overridden by passing values to the
prompt() method.

Syntax highlighting

Adding syntax highlighting is as simple as adding a lexer. All of the Pygments [http://pygments.org/] lexers can be used after wrapping them in a
PygmentsLexer. It is also possible to create a
custom lexer by implementing the Lexer abstract
base class.

from pygments.lexers.html import HtmlLexer
from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.lexers import PygmentsLexer

text = prompt('Enter HTML: ', lexer=PygmentsLexer(HtmlLexer))
print('You said: %s' % text)

[image: ../_images/html-input.png]
The default Pygments colorscheme is included as part of the default style in
prompt_toolkit. If you want to use another Pygments style along with the lexer,
you can do the following:

from pygments.lexers.html import HtmlLexer
from pygments.styles import get_style_by_name
from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.lexers import PygmentsLexer
from prompt_toolkit.styles.pygments import style_from_pygments_cls

style = style_from_pygments_cls(get_style_by_name('monokai'))
text = prompt('Enter HTML: ', lexer=PygmentsLexer(HtmlLexer), style=style,
 include_default_pygments_style=False)
print('You said: %s' % text)

We pass include_default_pygments_style=False, because otherwise, both
styles will be merged, possibly giving slightly different colors in the outcome
for cases where where our custom Pygments style doesn’t specify a color.

Colors

The colors for syntax highlighting are defined by a
Style instance. By default, a neutral
built-in style is used, but any style instance can be passed to the
prompt() function. A simple way to create a
style, is by using the from_dict()
function:

from pygments.lexers.html import HtmlLexer
from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.styles import Style
from prompt_toolkit.lexers import PygmentsLexer

our_style = Style.from_dict({
 'pygments.comment': '#888888 bold',
 'pygments.keyword': '#ff88ff bold',
})

text = prompt('Enter HTML: ', lexer=PygmentsLexer(HtmlLexer),
 style=our_style)

The style dictionary is very similar to the Pygments styles dictionary,
with a few differences:

	The roman, sans, mono and border options are ignored.

	The style has a few additions: blink, noblink, reverse and noreverse.

	Colors can be in the #ff0000 format, but they can be one of the built-in
ANSI color names as well. In that case, they map directly to the 16 color
palette of the terminal.

Read more about styling.

Using a Pygments style

All Pygments style classes can be used as well, when they are wrapped through
style_from_pygments_cls().

Suppose we’d like to use a Pygments style, for instance
pygments.styles.tango.TangoStyle, that is possible like this:

from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.styles import style_from_pygments_cls
from prompt_toolkit.lexers import PygmentsLexer
from pygments.styles.tango import TangoStyle
from pygments.lexers.html import HtmlLexer

tango_style = style_from_pygments_cls (TangoStyle)

text = prompt ('Enter HTML: ',
 lexer=PygmentsLexer(HtmlLexer),
 style=tango_style)

Creating a custom style could be done like this:

from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.styles import Style, style_from_pygments_cls, merge_styles
from prompt_toolkit.lexers import PygmentsLexer

from pygments.styles.tango import TangoStyle
from pygments.lexers.html import HtmlLexer

our_style = merge_styles([
 style_from_pygments_cls(TangoStyle),
 Style.from_dict({
 'pygments.comment': '#888888 bold',
 'pygments.keyword': '#ff88ff bold',
 })
])

text = prompt('Enter HTML: ', lexer=PygmentsLexer(HtmlLexer),
 style=our_style)

Coloring the prompt itself

It is possible to add some colors to the prompt itself. For this, we need to
build some formatted text. One way of doing this is by
creating a list of style/text tuples. In the following example, we use class
names to refer to the style.

from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.styles import Style

style = Style.from_dict({
 # User input (default text).
 '': '#ff0066',

 # Prompt.
 'username': '#884444',
 'at': '#00aa00',
 'colon': '#0000aa',
 'pound': '#00aa00',
 'host': '#00ffff bg:#444400',
 'path': 'ansicyan underline',
})

message = [
 ('class:username', 'john'),
 ('class:at', '@'),
 ('class:host', 'localhost'),
 ('class:colon', ':'),
 ('class:path', '/user/john'),
 ('class:pound', '# '),
]

text = prompt(message, style=style)

[image: ../_images/colored-prompt.png]
The message can be any kind of formatted text, as discussed here. It can also be a callable that returns some formatted text.

By default, colors are taken from the 256 color palette. If you want to have
24bit true color, this is possible by adding the
color_depth=ColorDepth.TRUE_COLOR option to the
prompt() function.

from prompt_toolkit.output import ColorDepth

text = prompt(message, style=style, color_depth=ColorDepth.TRUE_COLOR)

Autocompletion

Autocompletion can be added by passing a completer parameter. This should
be an instance of the Completer abstract
base class. WordCompleter is an example of
a completer that implements that interface.

from prompt_toolkit import prompt
from prompt_toolkit.completion import WordCompleter

html_completer = WordCompleter(['<html>', '<body>', '<head>', '<title>'])
text = prompt('Enter HTML: ', completer=html_completer)
print('You said: %s' % text)

WordCompleter is a simple completer that
completes the last word before the cursor with any of the given words.

[image: ../_images/html-completion.png]

Note

Note that in prompt_toolkit 2.0, the auto completion became synchronous. This
means that if it takes a long time to compute the completions, that this
will block the event loop and the input processing.

For heavy completion algorithms, it is recommended to wrap the completer in
a ThreadedCompleter in order to run it
in a background thread.

Nested completion

Sometimes you have a command line interface where the completion depends on the
previous words from the input. Examples are the CLIs from routers and switches.
A simple WordCompleter is not enough in
that case. We want to to be able to define completions at multiple hierarchical
levels. NestedCompleter solves this issue:

from prompt_toolkit import prompt
from prompt_toolkit.completion import NestedCompleter

completer = NestedCompleter.from_nested_dict({
 'show': {
 'version': None,
 'clock': None,
 'ip': {
 'interface': {'brief'}
 }
 },
 'exit': None,
})

text = prompt('# ', completer=completer)
print('You said: %s' % text)

Whenever there is a None value in the dictionary, it means that there is no
further nested completion at that point. When all values of a dictionary would
be None, it can also be replaced with a set.

A custom completer

For more complex examples, it makes sense to create a custom completer. For
instance:

from prompt_toolkit import prompt
from prompt_toolkit.completion import Completer, Completion

class MyCustomCompleter(Completer):
 def get_completions(self, document, complete_event):
 yield Completion('completion', start_position=0)

text = prompt('> ', completer=MyCustomCompleter())

A Completer class has to implement a
generator named get_completions()
that takes a Document and yields the current
Completion instances. Each completion
contains a portion of text, and a position.

The position is used for fixing text before the cursor. Pressing the tab key
could for instance turn parts of the input from lowercase to uppercase. This
makes sense for a case insensitive completer. Or in case of a fuzzy completion,
it could fix typos. When start_position is something negative, this amount
of characters will be deleted and replaced.

Styling individual completions

Each completion can provide a custom style, which is used when it is rendered
in the completion menu or toolbar. This is possible by passing a style to each
Completion instance.

from prompt_toolkit.completion import Completer, Completion

class MyCustomCompleter(Completer):
 def get_completions(self, document, complete_event):
 # Display this completion, black on yellow.
 yield Completion('completion1', start_position=0,
 style='bg:ansiyellow fg:ansiblack')

 # Underline completion.
 yield Completion('completion2', start_position=0,
 style='underline')

 # Specify class name, which will be looked up in the style sheet.
 yield Completion('completion3', start_position=0,
 style='class:special-completion')

The “colorful-prompts.py” example uses completion styling:

[image: ../_images/colorful-completions.png]
Finally, it is possible to pass formatted text for the
display attribute of a Completion. This
provides all the freedom you need to display the text in any possible way. It
can also be combined with the style attribute. For instance:

from prompt_toolkit.completion import Completer, Completion
from prompt_toolkit.formatted_text import HTML

class MyCustomCompleter(Completer):
 def get_completions(self, document, complete_event):
 yield Completion(
 'completion1', start_position=0,
 display=HTML('completion<ansired>1</ansired>'),
 style='bg:ansiyellow')

Fuzzy completion

If one possible completions is “django_migrations”, a fuzzy completer would
allow you to get this by typing “djm” only, a subset of characters for this
string.

Prompt_toolkit ships with a FuzzyCompleter
and FuzzyWordCompleter class. These provide
the means for doing this kind of “fuzzy completion”. The first one can take any
completer instance and wrap it so that it becomes a fuzzy completer. The second
one behaves like a WordCompleter wrapped
into a FuzzyCompleter.

Complete while typing

Autcompletions can be generated automatically while typing or when the user
presses the tab key. This can be configured with the complete_while_typing
option:

text = prompt('Enter HTML: ', completer=my_completer,
 complete_while_typing=True)

Notice that this setting is incompatible with the enable_history_search
option. The reason for this is that the up and down key bindings would conflict
otherwise. So, make sure to disable history search for this.

Asynchronous completion

When generating the completions takes a lot of time, it’s better to do this in
a background thread. This is possible by wrapping the completer in a
ThreadedCompleter, but also by passing the
complete_in_thread=True argument.

text = prompt('> ', completer=MyCustomCompleter(), complete_in_thread=True)

Input validation

A prompt can have a validator attached. This is some code that will check
whether the given input is acceptable and it will only return it if that’s the
case. Otherwise it will show an error message and move the cursor to a given
position.

A validator should implements the Validator
abstract base class. This requires only one method, named validate that
takes a Document as input and raises
ValidationError when the validation fails.

from prompt_toolkit.validation import Validator, ValidationError
from prompt_toolkit import prompt

class NumberValidator(Validator):
 def validate(self, document):
 text = document.text

 if text and not text.isdigit():
 i = 0

 # Get index of first non numeric character.
 # We want to move the cursor here.
 for i, c in enumerate(text):
 if not c.isdigit():
 break

 raise ValidationError(message='This input contains non-numeric characters',
 cursor_position=i)

number = int(prompt('Give a number: ', validator=NumberValidator()))
print('You said: %i' % number)

[image: ../_images/number-validator.png]
By default, the input is validated in real-time while the user is typing, but
prompt_toolkit can also validate after the user presses the enter key:

prompt('Give a number: ', validator=NumberValidator(),
 validate_while_typing=False)

If the input validation contains some heavy CPU intensive code, but you don’t
want to block the event loop, then it’s recommended to wrap the validator class
in a ThreadedValidator.

Validator from a callable

Instead of implementing the Validator
abstract base class, it is also possible to start from a simple function and
use the from_callable() classmethod.
This is easier and sufficient for probably 90% of the validators. It looks as
follows:

from prompt_toolkit.validation import Validator
from prompt_toolkit import prompt

def is_number(text):
 return text.isdigit()

validator = Validator.from_callable(
 is_number,
 error_message='This input contains non-numeric characters',
 move_cursor_to_end=True)

number = int(prompt('Give a number: ', validator=validator))
print('You said: %i' % number)

We define a function that takes a string, and tells whether it’s valid input or
not by returning a boolean.
from_callable() turns that into a
Validator instance. Notice that setting the
cursor position is not possible this way.

History

A History object keeps track of all the
previously entered strings, so that the up-arrow can reveal previously entered
items.

The recommended way is to use a
PromptSession, which uses an
InMemoryHistory for the entire session by
default. The following example has a history out of the box:

from prompt_toolkit import PromptSession

session = PromptSession()

while True:
 session.prompt()

To persist a history to disk, use a FileHistory
instead of the default
InMemoryHistory. This history object can be
passed either to a PromptSession or to the
prompt() function. For instance:

from prompt_toolkit import PromptSession
from prompt_toolkit.history import FileHistory

session = PromptSession(history=FileHistory('~/.myhistory'))

while True:
 session.prompt()

Auto suggestion

Auto suggestion is a way to propose some input completions to the user like the
fish shell [http://fishshell.com/].

Usually, the input is compared to the history and when there is another entry
starting with the given text, the completion will be shown as gray text behind
the current input. Pressing the right arrow → or c-e will insert
this suggestion, alt-f will insert the first word of the suggestion.

Note

When suggestions are based on the history, don’t forget to share one
History object between consecutive
prompt() calls. Using a
PromptSession does this for you.

Example:

from prompt_toolkit import PromptSession
from prompt_toolkit.history import InMemoryHistory
from prompt_toolkit.auto_suggest import AutoSuggestFromHistory

session = PromptSession()

while True:
 text = session.prompt('> ', auto_suggest=AutoSuggestFromHistory())
 print('You said: %s' % text)

[image: ../_images/auto-suggestion.png]
A suggestion does not have to come from the history. Any implementation of the
AutoSuggest abstract base class can be
passed as an argument.

Adding a bottom toolbar

Adding a bottom toolbar is as easy as passing a bottom_toolbar argument to
prompt(). This argument be either plain text,
formatted text or a callable that returns plain or
formatted text.

When a function is given, it will be called every time the prompt is rendered,
so the bottom toolbar can be used to display dynamic information.

The toolbar is always erased when the prompt returns.
Here we have an example of a callable that returns an
HTML object. By default, the toolbar
has the reversed style, which is why we are setting the background instead
of the foreground.

from prompt_toolkit import prompt
from prompt_toolkit.formatted_text import HTML

def bottom_toolbar():
 return HTML('This is a <style bg="ansired">Toolbar</style>!')

text = prompt('> ', bottom_toolbar=bottom_toolbar)
print('You said: %s' % text)

[image: ../_images/bottom-toolbar.png]
Similar, we could use a list of style/text tuples.

from prompt_toolkit import prompt
from prompt_toolkit.styles import Style

def bottom_toolbar():
 return [('class:bottom-toolbar', ' This is a toolbar. ')]

style = Style.from_dict({
 'bottom-toolbar': '#ffffff bg:#333333',
})

text = prompt('> ', bottom_toolbar=bottom_toolbar, style=style)
print('You said: %s' % text)

The default class name is bottom-toolbar and that will also be used to fill
the background of the toolbar.

Adding a right prompt

The prompt() function has out of the box
support for right prompts as well. People familiar to ZSH could recognise this
as the RPROMPT option.

So, similar to adding a bottom toolbar, we can pass an rprompt argument.
This can be either plain text, formatted text or a
callable which returns either.

from prompt_toolkit import prompt
from prompt_toolkit.styles import Style

example_style = Style.from_dict({
 'rprompt': 'bg:#ff0066 #ffffff',
})

def get_rprompt():
 return '<rprompt>'

answer = prompt('> ', rprompt=get_rprompt, style=example_style)

[image: ../_images/rprompt.png]
The get_rprompt function can return any kind of formatted text such as
HTML. it is also possible to pass text
directly to the rprompt argument of the
prompt() function. It does not have to be a
callable.

Vi input mode

Prompt-toolkit supports both Emacs and Vi key bindings, similar to Readline.
The prompt() function will use Emacs bindings by
default. This is done because on most operating systems, also the Bash shell
uses Emacs bindings by default, and that is more intuitive. If however, Vi
binding are required, just pass vi_mode=True.

from prompt_toolkit import prompt

prompt('> ', vi_mode=True)

Adding custom key bindings

By default, every prompt already has a set of key bindings which implements the
usual Vi or Emacs behaviour. We can extend this by passing another
KeyBindings instance to the
key_bindings argument of the prompt()
function or the PromptSession class.

An example of a prompt that prints 'hello world' when Control-T is pressed.

from prompt_toolkit import prompt
from prompt_toolkit.application import run_in_terminal
from prompt_toolkit.key_binding import KeyBindings

bindings = KeyBindings()

@bindings.add('c-t')
def _(event):
 " Say 'hello' when `c-t` is pressed. "
 def print_hello():
 print('hello world')
 run_in_terminal(print_hello)

@bindings.add('c-x')
def _(event):
 " Exit when `c-x` is pressed. "
 event.app.exit()

text = prompt('> ', key_bindings=bindings)
print('You said: %s' % text)

Note that we use
run_in_terminal() for the first key binding.
This ensures that the output of the print-statement and the prompt don’t mix
up. If the key bindings doesn’t print anything, then it can be handled directly
without nesting functions.

Enable key bindings according to a condition

Often, some key bindings can be enabled or disabled according to a certain
condition. For instance, the Emacs and Vi bindings will never be active at the
same time, but it is possible to switch between Emacs and Vi bindings at run
time.

In order to enable a key binding according to a certain condition, we have to
pass it a Filter, usually a
Condition instance. (Read more about
filters.)

from prompt_toolkit import prompt
from prompt_toolkit.filters import Condition
from prompt_toolkit.key_binding import KeyBindings

bindings = KeyBindings()

@Condition
def is_active():
 " Only activate key binding on the second half of each minute. "
 return datetime.datetime.now().second > 30

@bindings.add('c-t', filter=is_active)
def _(event):
 # ...
 pass

prompt('> ', key_bindings=bindings)

Dynamically switch between Emacs and Vi mode

The Application has an editing_mode
attribute. We can change the key bindings by changing this attribute from
EditingMode.VI to EditingMode.EMACS.

from prompt_toolkit import prompt
from prompt_toolkit.application.current import get_app
from prompt_toolkit.enums import EditingMode
from prompt_toolkit.key_binding import KeyBindings

def run():
 # Create a set of key bindings.
 bindings = KeyBindings()

 # Add an additional key binding for toggling this flag.
 @bindings.add('f4')
 def _(event):
 " Toggle between Emacs and Vi mode. "
 app = event.app

 if app.editing_mode == EditingMode.VI:
 app.editing_mode = EditingMode.EMACS
 else:
 app.editing_mode = EditingMode.VI

 # Add a toolbar at the bottom to display the current input mode.
 def bottom_toolbar():
 " Display the current input mode. "
 text = 'Vi' if get_app().editing_mode == EditingMode.VI else 'Emacs'
 return [
 ('class:toolbar', ' [F4] %s ' % text)
]

 prompt('> ', key_bindings=bindings, bottom_toolbar=bottom_toolbar)

run()

Read more about key bindings …

Using control-space for completion

An popular short cut that people sometimes use it to use control-space for
opening the autocompletion menu instead of the tab key. This can be done with
the following key binding.

kb = KeyBindings()

@kb.add('c-space')
def _(event):
 " Initialize autocompletion, or select the next completion. "
 buff = event.app.current_buffer
 if buff.complete_state:
 buff.complete_next()
 else:
 buff.start_completion(select_first=False)

Other prompt options

Multiline input

Reading multiline input is as easy as passing the multiline=True parameter.

from prompt_toolkit import prompt

prompt('> ', multiline=True)

A side effect of this is that the enter key will now insert a newline instead
of accepting and returning the input. The user will now have to press
Meta+Enter in order to accept the input. (Or Escape followed by
Enter.)

It is possible to specify a continuation prompt. This works by passing a
prompt_continuation callable to prompt().
This function is supposed to return formatted text, or
a list of (style, text) tuples. The width of the returned text should not
exceed the given width. (The width of the prompt margin is defined by the
prompt.)

from prompt_toolkit import prompt

def prompt_continuation(width, line_number, is_soft_wrap):
 return '.' * width
 # Or: return [('', '.' * width)]

prompt('multiline input> ', multiline=True,
 prompt_continuation=prompt_continuation)

[image: ../_images/multiline-input.png]

Passing a default

A default value can be given:

from prompt_toolkit import prompt
import getpass

prompt('What is your name: ', default='%s' % getpass.getuser())

Mouse support

There is limited mouse support for positioning the cursor, for scrolling (in
case of large multiline inputs) and for clicking in the autocompletion menu.

Enabling can be done by passing the mouse_support=True option.

from prompt_toolkit import prompt

prompt('What is your name: ', mouse_support=True)

Line wrapping

Line wrapping is enabled by default. This is what most people are used to and
this is what GNU Readline does. When it is disabled, the input string will
scroll horizontally.

from prompt_toolkit import prompt

prompt('What is your name: ', wrap_lines=False)

Password input

When the is_password=True flag has been given, the input is replaced by
asterisks (* characters).

from prompt_toolkit import prompt

prompt('Enter password: ', is_password=True)

Cursor shapes

Many terminals support displaying different types of cursor shapes. The most
common are block, beam or underscore. Either blinking or not. It is possible to
decide which cursor to display while asking for input, or in case of Vi input
mode, have a modal prompt for which its cursor shape changes according to the
input mode.

from prompt_toolkit import prompt
from prompt_toolkit.cursor_shapes import CursorShape, ModalCursorShapeConfig

Several possible values for the `cursor_shape_config` parameter:
prompt('>', cursor=CursorShape.BLOCK)
prompt('>', cursor=CursorShape.UNDERLINE)
prompt('>', cursor=CursorShape.BEAM)
prompt('>', cursor=CursorShape.BLINKING_BLOCK)
prompt('>', cursor=CursorShape.BLINKING_UNDERLINE)
prompt('>', cursor=CursorShape.BLINKING_BEAM)
prompt('>', cursor=ModalCursorShapeConfig())

Prompt in an asyncio application

Note

New in prompt_toolkit 3.0. (In prompt_toolkit 2.0 this was possible using a
work-around).

For asyncio [https://docs.python.org/3/library/asyncio.html] applications,
it’s very important to never block the eventloop. However,
prompt() is blocking, and calling this would
freeze the whole application. Asyncio actually won’t even allow us to run that
function within a coroutine.

The answer is to call
prompt_async() instead of
prompt(). The async variation
returns a coroutines and is awaitable.

from prompt_toolkit import PromptSession
from prompt_toolkit.patch_stdout import patch_stdout

async def my_coroutine():
 session = PromptSession()
 while True:
 with patch_stdout():
 result = await session.prompt_async('Say something: ')
 print('You said: %s' % result)

The patch_stdout() context manager is
optional, but it’s recommended, because other coroutines could print to stdout.
This ensures that other output won’t destroy the prompt.

Reading keys from stdin, one key at a time, but without a prompt

Suppose that you want to use prompt_toolkit to read the keys from stdin, one
key at a time, but not render a prompt to the output, that is also possible:

import asyncio

from prompt_toolkit.input import create_input
from prompt_toolkit.keys import Keys

async def main() -> None:
 done = asyncio.Event()
 input = create_input()

 def keys_ready():
 for key_press in input.read_keys():
 print(key_press)

 if key_press.key == Keys.ControlC:
 done.set()

 with input.raw_mode():
 with input.attach(keys_ready):
 await done.wait()

if __name__ == "__main__":
 asyncio.run(main())

The above snippet will print the KeyPress object whenever a key is pressed.
This is also cross platform, and should work on Windows.

Dialogs

Prompt_toolkit ships with a high level API for displaying dialogs, similar to
the Whiptail program, but in pure Python.

Message box

Use the message_dialog() function to display a
simple message box. For instance:

from prompt_toolkit.shortcuts import message_dialog

message_dialog(
 title='Example dialog window',
 text='Do you want to continue?\nPress ENTER to quit.').run()

[image: ../_images/messagebox.png]

Input box

The input_dialog() function can display an
input box. It will return the user input as a string.

from prompt_toolkit.shortcuts import input_dialog

text = input_dialog(
 title='Input dialog example',
 text='Please type your name:').run()

[image: ../_images/inputbox.png]
The password=True option can be passed to the
input_dialog() function to turn this into a
password input box.

Yes/No confirmation dialog

The yes_no_dialog() function displays a yes/no
confirmation dialog. It will return a boolean according to the selection.

from prompt_toolkit.shortcuts import yes_no_dialog

result = yes_no_dialog(
 title='Yes/No dialog example',
 text='Do you want to confirm?').run()

[image: ../_images/confirm.png]

Button dialog

The button_dialog() function displays a dialog
with choices offered as buttons. Buttons are indicated as a list of tuples,
each providing the label (first) and return value if clicked (second).

from prompt_toolkit.shortcuts import button_dialog

result = button_dialog(
 title='Button dialog example',
 text='Do you want to confirm?',
 buttons=[
 ('Yes', True),
 ('No', False),
 ('Maybe...', None)
],
).run()

[image: ../_images/button.png]

Radio list dialog

The radiolist_dialog() function displays a dialog
with choices offered as a radio list. The values are provided as a list of tuples,
each providing the return value (first element) and the displayed value (second element).

from prompt_toolkit.shortcuts import radiolist_dialog

result = radiolist_dialog(
 title="RadioList dialog",
 text="Which breakfast would you like ?",
 values=[
 ("breakfast1", "Eggs and beacon"),
 ("breakfast2", "French breakfast"),
 ("breakfast3", "Equestrian breakfast")
]
).run()

Checkbox list dialog

The checkboxlist_dialog() has the same usage and purpose than the Radiolist dialog, but allows several values to be selected and therefore returned.

from prompt_toolkit.shortcuts import checkboxlist_dialog

results_array = checkboxlist_dialog(
 title="CheckboxList dialog",
 text="What would you like in your breakfast ?",
 values=[
 ("eggs", "Eggs"),
 ("bacon", "Bacon"),
 ("croissants", "20 Croissants"),
 ("daily", "The breakfast of the day")
]
).run()

Styling of dialogs

A custom Style instance can be passed to all
dialogs to override the default style. Also, text can be styled by passing an
HTML object.

from prompt_toolkit.formatted_text import HTML
from prompt_toolkit.shortcuts import message_dialog
from prompt_toolkit.styles import Style

example_style = Style.from_dict({
 'dialog': 'bg:#88ff88',
 'dialog frame.label': 'bg:#ffffff #000000',
 'dialog.body': 'bg:#000000 #00ff00',
 'dialog shadow': 'bg:#00aa00',
})

message_dialog(
 title=HTML('<style bg="blue" fg="white">Styled</style> '
 '<style fg="ansired">dialog</style> window'),
 text='Do you want to continue?\nPress ENTER to quit.',
 style=example_style).run()

[image: ../_images/styled.png]

Styling reference sheet

In reality, the shortcut commands presented above build a full-screen frame by using a list of components. The two tables below allow you to get the classnames available for each shortcut, therefore you will be able to provide a custom style for every element that is displayed, using the method provided above.

Note

All the shortcuts use the Dialog component, therefore it isn’t specified explicitly below.

	Shortcut

	Components used

	yes_no_dialog

	
	Label

	Button (x2)

	button_dialog

	
	Label

	Button

	input_dialog

	
	TextArea

	Button (x2)

	message_dialog

	
	Label

	Button

	radiolist_dialog

	
	Label

	RadioList

	Button (x2)

	checkboxlist_dialog

	
	Label

	CheckboxList

	Button (x2)

	progress_dialog

	
	Label

	TextArea (locked)

	ProgressBar

	Components

	Available classnames

	Dialog

	
	dialog

	dialog.body

	TextArea

	
	text-area

	text-area.prompt

	Label

	
	label

	Button

	
	button

	button.focused

	button.arrow

	button.text

	Frame

	
	frame

	frame.border

	frame.label

	Shadow

	
	shadow

	RadioList

	
	radio-list

	radio

	radio-checked

	radio-selected

	CheckboxList

	
	checkbox-list

	checkbox

	checkbox-checked

	checkbox-selected

	VerticalLine

	
	line

	vertical-line

	HorizontalLine

	
	line

	horizontal-line

	ProgressBar

	
	progress-bar

	progress-bar.used

Example

Let’s customize the example of the checkboxlist_dialog.

It uses 2 Button, a CheckboxList and a Label, packed inside a Dialog.
Therefore we can customize each of these elements separately, using for instance:

from prompt_toolkit.shortcuts import checkboxlist_dialog
from prompt_toolkit.styles import Style

results = checkboxlist_dialog(
 title="CheckboxList dialog",
 text="What would you like in your breakfast ?",
 values=[
 ("eggs", "Eggs"),
 ("bacon", "Bacon"),
 ("croissants", "20 Croissants"),
 ("daily", "The breakfast of the day")
],
 style=Style.from_dict({
 'dialog': 'bg:#cdbbb3',
 'button': 'bg:#bf99a4',
 'checkbox': '#e8612c',
 'dialog.body': 'bg:#a9cfd0',
 'dialog shadow': 'bg:#c98982',
 'frame.label': '#fcaca3',
 'dialog.body label': '#fd8bb6',
 })
).run()

Progress bars

Prompt_toolkit ships with a high level API for displaying progress bars,
inspired by tqdm [https://github.com/tqdm/tqdm]

Warning

The API for the prompt_toolkit progress bars is still very new and can
possibly change in the future. It is usable and tested, but keep this in
mind when upgrading.

Remember that the examples directory [https://github.com/prompt-toolkit/python-prompt-toolkit/tree/master/examples]
of the prompt_toolkit repository ships with many progress bar examples as well.

Simple progress bar

Creating a new progress bar can be done by calling the
ProgressBar context manager.

The progress can be displayed for any iterable. This works by wrapping the
iterable (like range) with the
ProgressBar context manager itself. This
way, the progress bar knows when the next item is consumed by the forloop and
when progress happens.

from prompt_toolkit.shortcuts import ProgressBar
import time

with ProgressBar() as pb:
 for i in pb(range(800)):
 time.sleep(.01)

[image: ../_images/simple-progress-bar.png]
Keep in mind that not all iterables can report their total length. This happens
with a typical generator. In that case, you can still pass the total as follows
in order to make displaying the progress possible:

def some_iterable():
 yield ...

with ProgressBar() as pb:
 for i in pb(some_iterable, total=1000):
 time.sleep(.01)

Multiple parallel tasks

A prompt_toolkit ProgressBar can display the
progress of multiple tasks running in parallel. Each task can run in a separate
thread and the ProgressBar user interface
runs in its own thread.

Notice that we set the “daemon” flag for both threads that run the tasks. This
is because control-c will stop the progress and quit our application. We don’t
want the application to wait for the background threads to finish. Whether you
want this depends on the application.

from prompt_toolkit.shortcuts import ProgressBar
import time
import threading

with ProgressBar() as pb:
 # Two parallel tasks.
 def task_1():
 for i in pb(range(100)):
 time.sleep(.05)

 def task_2():
 for i in pb(range(150)):
 time.sleep(.08)

 # Start threads.
 t1 = threading.Thread(target=task_1)
 t2 = threading.Thread(target=task_2)
 t1.daemon = True
 t2.daemon = True
 t1.start()
 t2.start()

 # Wait for the threads to finish. We use a timeout for the join() call,
 # because on Windows, join cannot be interrupted by Control-C or any other
 # signal.
 for t in [t1, t2]:
 while t.is_alive():
 t.join(timeout=.5)

[image: ../_images/two-tasks.png]

Adding a title and label

Each progress bar can have one title, and for each task an individual label.
Both the title and the labels can be formatted text.

from prompt_toolkit.shortcuts import ProgressBar
from prompt_toolkit.formatted_text import HTML
import time

title = HTML('Downloading <style bg="yellow" fg="black">4 files...</style>')
label = HTML('<ansired>some file</ansired>: ')

with ProgressBar(title=title) as pb:
 for i in pb(range(800), label=label):
 time.sleep(.01)

[image: ../_images/colored-title-and-label.png]

Formatting the progress bar

The visualisation of a ProgressBar can be
customized by using a different sequence of formatters. The default formatting
looks something like this:

from prompt_toolkit.shortcuts.progress_bar.formatters import *

default_formatting = [
 Label(),
 Text(' '),
 Percentage(),
 Text(' '),
 Bar(),
 Text(' '),
 Progress(),
 Text(' '),
 Text('eta [', style='class:time-left'),
 TimeLeft(),
 Text(']', style='class:time-left'),
 Text(' '),
]

That sequence of
Formatter can be
passed to the formatter argument of
ProgressBar. So, we could change this and
modify the progress bar to look like an apt-get style progress bar:

from prompt_toolkit.shortcuts import ProgressBar
from prompt_toolkit.styles import Style
from prompt_toolkit.shortcuts.progress_bar import formatters
import time

style = Style.from_dict({
 'label': 'bg:#ffff00 #000000',
 'percentage': 'bg:#ffff00 #000000',
 'current': '#448844',
 'bar': '',
})

custom_formatters = [
 formatters.Label(),
 formatters.Text(': [', style='class:percentage'),
 formatters.Percentage(),
 formatters.Text(']', style='class:percentage'),
 formatters.Text(' '),
 formatters.Bar(sym_a='#', sym_b='#', sym_c='.'),
 formatters.Text(' '),
]

with ProgressBar(style=style, formatters=custom_formatters) as pb:
 for i in pb(range(1600), label='Installing'):
 time.sleep(.01)

[image: ../_images/apt-get.png]

Adding key bindings and toolbar

Like other prompt_toolkit applications, we can add custom key bindings, by
passing a KeyBindings object:

from prompt_toolkit import HTML
from prompt_toolkit.key_binding import KeyBindings
from prompt_toolkit.patch_stdout import patch_stdout
from prompt_toolkit.shortcuts import ProgressBar

import os
import time
import signal

bottom_toolbar = HTML(' [f] Print "f" [x] Abort.')

Create custom key bindings first.
kb = KeyBindings()
cancel = [False]

@kb.add('f')
def _(event):
 print('You pressed `f`.')

@kb.add('x')
def _(event):
 " Send Abort (control-c) signal. "
 cancel[0] = True
 os.kill(os.getpid(), signal.SIGINT)

Use `patch_stdout`, to make sure that prints go above the
application.
with patch_stdout():
 with ProgressBar(key_bindings=kb, bottom_toolbar=bottom_toolbar) as pb:
 for i in pb(range(800)):
 time.sleep(.01)

 # Stop when the cancel flag has been set.
 if cancel[0]:
 break

Notice that we use patch_stdout() to make
printing text possible while the progress bar is displayed. This ensures that
printing happens above the progress bar.

Further, when “x” is pressed, we set a cancel flag, which stops the progress.
It would also be possible to send SIGINT to the mean thread, but that’s not
always considered a clean way of cancelling something.

In the example above, we also display a toolbar at the bottom which shows the
key bindings.

[image: ../_images/custom-key-bindings.png]
Read more about key bindings …

Building full screen applications

prompt_toolkit can be used to create complex full screen terminal
applications. Typically, an application consists of a layout (to describe the
graphical part) and a set of key bindings.

The sections below describe the components required for full screen
applications (or custom, non full screen applications), and how to assemble
them together.

Before going through this page, it could be helpful to go through asking
for input (prompts) first. Many things that apply to an
input prompt, like styling, key bindings and so on, also apply to full screen
applications.

Note

Also remember that the examples directory of the prompt_toolkit
repository contains plenty of examples. Each example is supposed to explain
one idea. So, this as well should help you get started.

Don’t hesitate to open a GitHub issue if you feel that a certain example is
missing.

A simple application

Every prompt_toolkit application is an instance of an
Application object. The simplest full
screen example would look like this:

from prompt_toolkit import Application

app = Application(full_screen=True)
app.run()

This will display a dummy application that says “No layout specified. Press
ENTER to quit.”.

Note

If we wouldn’t set the full_screen option, the application would
not run in the alternate screen buffer, and only consume the least
amount of space required for the layout.

An application consists of several components. The most important are:

	I/O objects: the input and output device.

	The layout: this defines the graphical structure of the application. For
instance, a text box on the left side, and a button on the right side.
You can also think of the layout as a collection of ‘widgets’.

	A style: this defines what colors and underline/bold/italic styles are used
everywhere.

	A set of key bindings.

We will discuss all of these in more detail below.

I/O objects

Every Application instance requires an I/O
object for input and output:

	An Input instance, which is an abstraction
of the input stream (stdin).

	An Output instance, which is an
abstraction of the output stream, and is called by the renderer.

Both are optional and normally not needed to pass explicitly. Usually, the
default works fine.

There is a third I/O object which is also required by the application, but not
passed inside. This is the event loop, an
eventloop instance. This is basically a
while-true loop that waits for user input, and when it receives something (like
a key press), it will send that to the the appropriate handler, like for
instance, a key binding.

When run() is called, the event
loop will run until the application is done. An application will quit when
exit() is called.

The layout

A layered layout architecture

There are several ways to create a prompt_toolkit layout, depending on how
customizable you want things to be. In fact, there are several layers of
abstraction.

	The most low-level way of creating a layout is by combining
Container and
UIControl objects.

Examples of Container objects are
VSplit (vertical split),
HSplit (horizontal split) and
FloatContainer. These containers arrange the
layout and can split it in multiple regions. Each container can recursively
contain multiple other containers. They can be combined in any way to define
the “shape” of the layout.

The Window object is a special kind of
container that can contain a UIControl
object. The UIControl object is responsible
for the generation of the actual content. The
Window object acts as an adaptor between the
UIControl and other containers, but it’s also
responsible for the scrolling and line wrapping of the content.

Examples of UIControl objects are
BufferControl for showing the content of an
editable/scrollable buffer, and
FormattedTextControl for displaying
(formatted) text.

Normally, it is never needed to create new
UIControl or
Container classes, but instead you would
create the layout by composing instances of the existing built-ins.

	A higher level abstraction of building a layout is by using “widgets”. A
widget is a reusable layout component that can contain multiple containers
and controls. Widgets have a __pt_container__ function, which returns
the root container for this widget. Prompt_toolkit contains a couple of
widgets like TextArea,
Button,
Frame,
VerticalLine and so on.

	The highest level abstractions can be found in the shortcuts module.
There we don’t have to think about the layout, controls and containers at
all. This is the simplest way to use prompt_toolkit, but is only meant for
specific use cases, like a prompt or a simple dialog window.

Containers and controls

The biggest difference between containers and controls is that containers
arrange the layout by splitting the screen in many regions, while controls are
responsible for generating the actual content.

Note

Under the hood, the difference is:

	containers use absolute coordinates, and paint on a
Screen instance.

	user controls create a UIContent
instance. This is a collection of lines that represent the actual
content. A UIControl is not aware
of the screen.

	Abstract base class

	Examples

	Container

	HSplit
VSplit
FloatContainer
Window
ScrollablePane

	UIControl

	BufferControl
FormattedTextControl

The Window class itself is
particular: it is a Container that
can contain a UIControl. Thus, it’s the adaptor
between the two. The Window class also takes
care of scrolling the content and wrapping the lines if needed.

Finally, there is the Layout class which wraps
the whole layout. This is responsible for keeping track of which window has the
focus.

Here is an example of a layout that displays the content of the default buffer
on the left, and displays "Hello world" on the right. In between it shows a
vertical line:

from prompt_toolkit import Application
from prompt_toolkit.buffer import Buffer
from prompt_toolkit.layout.containers import VSplit, Window
from prompt_toolkit.layout.controls import BufferControl, FormattedTextControl
from prompt_toolkit.layout.layout import Layout

buffer1 = Buffer() # Editable buffer.

root_container = VSplit([
 # One window that holds the BufferControl with the default buffer on
 # the left.
 Window(content=BufferControl(buffer=buffer1)),

 # A vertical line in the middle. We explicitly specify the width, to
 # make sure that the layout engine will not try to divide the whole
 # width by three for all these windows. The window will simply fill its
 # content by repeating this character.
 Window(width=1, char='|'),

 # Display the text 'Hello world' on the right.
 Window(content=FormattedTextControl(text='Hello world')),
])

layout = Layout(root_container)

app = Application(layout=layout, full_screen=True)
app.run() # You won't be able to Exit this app

Notice that if you execute this right now, there is no way to quit this
application yet. This is something we explain in the next section below.

More complex layouts can be achieved by nesting multiple
VSplit,
HSplit and
FloatContainer objects.

If you want to make some part of the layout only visible when a certain
condition is satisfied, use a
ConditionalContainer.

Finally, there is ScrollablePane, a container
class that can be used to create long forms or nested layouts that are
scrollable as a whole.

Focusing windows

Focusing something can be done by calling the
focus() method. This method is very
flexible and accepts a Window, a
Buffer, a
UIControl and more.

In the following example, we use get_app()
for getting the active application.

from prompt_toolkit.application import get_app

This window was created earlier.
w = Window()

...

Now focus it.
get_app().layout.focus(w)

Changing the focus is something which is typically done in a key binding, so
read on to see how to define key bindings.

Key bindings

In order to react to user actions, we need to create a
KeyBindings object and pass
that to our Application.

There are two kinds of key bindings:

	Global key bindings, which are always active.

	Key bindings that belong to a certain
UIControl and are only active when
this control is focused. Both
BufferControl
FormattedTextControl take a key_bindings
argument.

Global key bindings

Key bindings can be passed to the application as follows:

from prompt_toolkit import Application
from prompt_toolkit.key_binding import KeyBindings

kb = KeyBindings()
app = Application(key_bindings=kb)
app.run()

To register a new keyboard shortcut, we can use the
add() method as a decorator of
the key handler:

from prompt_toolkit import Application
from prompt_toolkit.key_binding import KeyBindings

kb = KeyBindings()

@kb.add('c-q')
def exit_(event):
 """
 Pressing Ctrl-Q will exit the user interface.

 Setting a return value means: quit the event loop that drives the user
 interface and return this value from the `Application.run()` call.
 """
 event.app.exit()

app = Application(key_bindings=kb, full_screen=True)
app.run()

The callback function is named exit_ for clarity, but it could have been
named _ (underscore) as well, because we won’t refer to this name.

Read more about key bindings …

Modal containers

The following container objects take a modal argument
VSplit,
HSplit, and
FloatContainer.

Setting modal=True makes what is called a modal container. Normally, a
child container would inherit its parent key bindings. This does not apply to
modal containers.

Consider a modal container (e.g. VSplit)
is child of another container, its parent. Any key bindings from the parent
are not taken into account if the modal container (child) has the focus.

This is useful in a complex layout, where many controls have their own key
bindings, but you only want to enable the key bindings for a certain region of
the layout.

The global key bindings are always active.

More about the Window class

As said earlier, a Window is a
Container that wraps a
UIControl, like a
BufferControl or
FormattedTextControl.

Note

Basically, windows are the leafs in the tree structure that represent the UI.

A Window provides a “view” on the
UIControl, which provides lines of content. The
window is in the first place responsible for the line wrapping and scrolling of
the content, but there are much more options.

	Adding left or right margins. These are used for displaying scroll bars or
line numbers.

	There are the cursorline and cursorcolumn options. These allow
highlighting the line or column of the cursor position.

	Alignment of the content. The content can be left aligned, right aligned or
centered.

	Finally, the background can be filled with a default character.

More about buffers and BufferControl

Input processors

A Processor is used to postprocess
the content of a BufferControl before it’s
displayed. It can for instance highlight matching brackets or change the
visualisation of tabs and so on.

A Processor operates on individual
lines. Basically, it takes a (formatted) line and produces a new (formatted)
line.

Some build-in processors:

	Processor

	Usage:

	HighlightSearchProcessor

	Highlight the current search results.

	HighlightSelectionProcessor

	Highlight the selection.

	PasswordProcessor

	Display input as asterisks. (* characters).

	BracketsMismatchProcessor

	Highlight open/close mismatches for brackets.

	BeforeInput

	Insert some text before.

	AfterInput

	Insert some text after.

	AppendAutoSuggestion

	Append auto suggestion text.

	ShowLeadingWhiteSpaceProcessor

	Visualise leading whitespace.

	ShowTrailingWhiteSpaceProcessor

	Visualise trailing whitespace.

	TabsProcessor

	Visualise tabs as n spaces, or some symbols.

A BufferControl takes only one processor as
input, but it is possible to “merge” multiple processors into one with the
merge_processors() function.

Tutorials

Contents:

	Tutorial: Build an SQLite REPL

Tutorial: Build an SQLite REPL

The aim of this tutorial is to build an interactive command line interface for
an SQLite database using prompt_toolkit [https://github.com/prompt-toolkit/python-prompt-toolkit].

First, install the library using pip, if you haven’t done this already.

pip install prompt_toolkit

Read User Input

Let’s start accepting input using the
prompt() function. This will ask the user for
input, and echo back whatever the user typed. We wrap it in a main()
function as a good practice.

from prompt_toolkit import prompt

def main():
 text = prompt('> ')
 print('You entered:', text)

if __name__ == '__main__':
 main()

[image: ../../_images/sqlite-1.png]

Loop The REPL

Now we want to call the prompt()
method in a loop. In order to keep the history, the easiest way to do it is to
use a PromptSession. This uses an
InMemoryHistory underneath that keeps track of
the history, so that if the user presses the up-arrow, they’ll see the previous
entries.

The prompt() method raises
KeyboardInterrupt when ControlC has been pressed and EOFError when
ControlD has been pressed. This is what people use for cancelling commands and
exiting in a REPL. The try/except below handles these error conditions and make
sure that we go to the next iteration of the loop or quit the loop
respectively.

from prompt_toolkit import PromptSession

def main():
 session = PromptSession()

 while True:
 try:
 text = session.prompt('> ')
 except KeyboardInterrupt:
 continue
 except EOFError:
 break
 else:
 print('You entered:', text)
 print('GoodBye!')

if __name__ == '__main__':
 main()

[image: ../../_images/sqlite-2.png]

Syntax Highlighting

This is where things get really interesting. Let’s step it up a notch by adding
syntax highlighting to the user input. We know that users will be entering SQL
statements, so we can leverage the Pygments [http://pygments.org/] library for coloring the input.
The lexer parameter allows us to set the syntax lexer. We’re going to use
the SqlLexer from the Pygments [http://pygments.org/] library for highlighting.

Notice that in order to pass a Pygments lexer to prompt_toolkit, it needs to be
wrapped into a PygmentsLexer.

from prompt_toolkit import PromptSession
from prompt_toolkit.lexers import PygmentsLexer
from pygments.lexers.sql import SqlLexer

def main():
 session = PromptSession(lexer=PygmentsLexer(SqlLexer))

 while True:
 try:
 text = session.prompt('> ')
 except KeyboardInterrupt:
 continue
 except EOFError:
 break
 else:
 print('You entered:', text)
 print('GoodBye!')

if __name__ == '__main__':
 main()

[image: ../../_images/sqlite-3.png]

Auto-completion

Now we are going to add auto completion. We’d like to display a drop down menu
of possible keywords [https://www.sqlite.org/lang_keywords.html] when the
user starts typing.

We can do this by creating an sql_completer object from the
WordCompleter class, defining a set of
keywords for the auto-completion.

Like the lexer, this sql_completer instance can be passed to either the
PromptSession class or the
prompt() method.

from prompt_toolkit import PromptSession
from prompt_toolkit.completion import WordCompleter
from prompt_toolkit.lexers import PygmentsLexer
from pygments.lexers.sql import SqlLexer

sql_completer = WordCompleter([
 'abort', 'action', 'add', 'after', 'all', 'alter', 'analyze', 'and',
 'as', 'asc', 'attach', 'autoincrement', 'before', 'begin', 'between',
 'by', 'cascade', 'case', 'cast', 'check', 'collate', 'column',
 'commit', 'conflict', 'constraint', 'create', 'cross', 'current_date',
 'current_time', 'current_timestamp', 'database', 'default',
 'deferrable', 'deferred', 'delete', 'desc', 'detach', 'distinct',
 'drop', 'each', 'else', 'end', 'escape', 'except', 'exclusive',
 'exists', 'explain', 'fail', 'for', 'foreign', 'from', 'full', 'glob',
 'group', 'having', 'if', 'ignore', 'immediate', 'in', 'index',
 'indexed', 'initially', 'inner', 'insert', 'instead', 'intersect',
 'into', 'is', 'isnull', 'join', 'key', 'left', 'like', 'limit',
 'match', 'natural', 'no', 'not', 'notnull', 'null', 'of', 'offset',
 'on', 'or', 'order', 'outer', 'plan', 'pragma', 'primary', 'query',
 'raise', 'recursive', 'references', 'regexp', 'reindex', 'release',
 'rename', 'replace', 'restrict', 'right', 'rollback', 'row',
 'savepoint', 'select', 'set', 'table', 'temp', 'temporary', 'then',
 'to', 'transaction', 'trigger', 'union', 'unique', 'update', 'using',
 'vacuum', 'values', 'view', 'virtual', 'when', 'where', 'with',
 'without'], ignore_case=True)

def main():
 session = PromptSession(
 lexer=PygmentsLexer(SqlLexer), completer=sql_completer)

 while True:
 try:
 text = session.prompt('> ')
 except KeyboardInterrupt:
 continue
 except EOFError:
 break
 else:
 print('You entered:', text)
 print('GoodBye!')

if __name__ == '__main__':
 main()

[image: ../../_images/sqlite-4.png]
In about 30 lines of code we got ourselves an auto completing, syntax
highlighting REPL. Let’s make it even better.

Styling the menus

If we want, we can now change the colors of the completion menu. This is
possible by creating a Style instance and
passing it to the prompt()
function.

from prompt_toolkit import PromptSession
from prompt_toolkit.completion import WordCompleter
from prompt_toolkit.lexers import PygmentsLexer
from prompt_toolkit.styles import Style
from pygments.lexers.sql import SqlLexer

sql_completer = WordCompleter([
 'abort', 'action', 'add', 'after', 'all', 'alter', 'analyze', 'and',
 'as', 'asc', 'attach', 'autoincrement', 'before', 'begin', 'between',
 'by', 'cascade', 'case', 'cast', 'check', 'collate', 'column',
 'commit', 'conflict', 'constraint', 'create', 'cross', 'current_date',
 'current_time', 'current_timestamp', 'database', 'default',
 'deferrable', 'deferred', 'delete', 'desc', 'detach', 'distinct',
 'drop', 'each', 'else', 'end', 'escape', 'except', 'exclusive',
 'exists', 'explain', 'fail', 'for', 'foreign', 'from', 'full', 'glob',
 'group', 'having', 'if', 'ignore', 'immediate', 'in', 'index',
 'indexed', 'initially', 'inner', 'insert', 'instead', 'intersect',
 'into', 'is', 'isnull', 'join', 'key', 'left', 'like', 'limit',
 'match', 'natural', 'no', 'not', 'notnull', 'null', 'of', 'offset',
 'on', 'or', 'order', 'outer', 'plan', 'pragma', 'primary', 'query',
 'raise', 'recursive', 'references', 'regexp', 'reindex', 'release',
 'rename', 'replace', 'restrict', 'right', 'rollback', 'row',
 'savepoint', 'select', 'set', 'table', 'temp', 'temporary', 'then',
 'to', 'transaction', 'trigger', 'union', 'unique', 'update', 'using',
 'vacuum', 'values', 'view', 'virtual', 'when', 'where', 'with',
 'without'], ignore_case=True)

style = Style.from_dict({
 'completion-menu.completion': 'bg:#008888 #ffffff',
 'completion-menu.completion.current': 'bg:#00aaaa #000000',
 'scrollbar.background': 'bg:#88aaaa',
 'scrollbar.button': 'bg:#222222',
})

def main():
 session = PromptSession(
 lexer=PygmentsLexer(SqlLexer), completer=sql_completer, style=style)

 while True:
 try:
 text = session.prompt('> ')
 except KeyboardInterrupt:
 continue
 except EOFError:
 break
 else:
 print('You entered:', text)
 print('GoodBye!')

if __name__ == '__main__':
 main()

[image: ../../_images/sqlite-5.png]
All that’s left is hooking up the sqlite backend, which is left as an exercise
for the reader. Just kidding… Keep reading.

Hook up Sqlite

This step is the final step to make the SQLite REPL actually work. It’s time
to relay the input to SQLite.

Obviously I haven’t done the due diligence to deal with the errors. But it
gives a good idea of how to get started.

#!/usr/bin/env python
import sys
import sqlite3

from prompt_toolkit import PromptSession
from prompt_toolkit.completion import WordCompleter
from prompt_toolkit.lexers import PygmentsLexer
from prompt_toolkit.styles import Style
from pygments.lexers.sql import SqlLexer

sql_completer = WordCompleter([
 'abort', 'action', 'add', 'after', 'all', 'alter', 'analyze', 'and',
 'as', 'asc', 'attach', 'autoincrement', 'before', 'begin', 'between',
 'by', 'cascade', 'case', 'cast', 'check', 'collate', 'column',
 'commit', 'conflict', 'constraint', 'create', 'cross', 'current_date',
 'current_time', 'current_timestamp', 'database', 'default',
 'deferrable', 'deferred', 'delete', 'desc', 'detach', 'distinct',
 'drop', 'each', 'else', 'end', 'escape', 'except', 'exclusive',
 'exists', 'explain', 'fail', 'for', 'foreign', 'from', 'full', 'glob',
 'group', 'having', 'if', 'ignore', 'immediate', 'in', 'index',
 'indexed', 'initially', 'inner', 'insert', 'instead', 'intersect',
 'into', 'is', 'isnull', 'join', 'key', 'left', 'like', 'limit',
 'match', 'natural', 'no', 'not', 'notnull', 'null', 'of', 'offset',
 'on', 'or', 'order', 'outer', 'plan', 'pragma', 'primary', 'query',
 'raise', 'recursive', 'references', 'regexp', 'reindex', 'release',
 'rename', 'replace', 'restrict', 'right', 'rollback', 'row',
 'savepoint', 'select', 'set', 'table', 'temp', 'temporary', 'then',
 'to', 'transaction', 'trigger', 'union', 'unique', 'update', 'using',
 'vacuum', 'values', 'view', 'virtual', 'when', 'where', 'with',
 'without'], ignore_case=True)

style = Style.from_dict({
 'completion-menu.completion': 'bg:#008888 #ffffff',
 'completion-menu.completion.current': 'bg:#00aaaa #000000',
 'scrollbar.background': 'bg:#88aaaa',
 'scrollbar.button': 'bg:#222222',
})

def main(database):
 connection = sqlite3.connect(database)
 session = PromptSession(
 lexer=PygmentsLexer(SqlLexer), completer=sql_completer, style=style)

 while True:
 try:
 text = session.prompt('> ')
 except KeyboardInterrupt:
 continue # Control-C pressed. Try again.
 except EOFError:
 break # Control-D pressed.

 with connection:
 try:
 messages = connection.execute(text)
 except Exception as e:
 print(repr(e))
 else:
 for message in messages:
 print(message)

 print('GoodBye!')

if __name__ == '__main__':
 if len(sys.argv) < 2:
 db = ':memory:'
 else:
 db = sys.argv[1]

 main(db)

[image: ../../_images/sqlite-6.png]
I hope that gives an idea of how to get started on building command line
interfaces.

The End.

Advanced topics

Contents:

	More about key bindings

	More about styling

	Filters

	The rendering flow

	Running on top of the asyncio event loop

	Unit testing

	Input hooks

	Architecture

	The rendering pipeline

More about key bindings

This page contains a few additional notes about key bindings.

Key bindings can be defined as follows by creating a
KeyBindings instance:

from prompt_toolkit.key_binding import KeyBindings

bindings = KeyBindings()

@bindings.add('a')
def _(event):
 " Do something if 'a' has been pressed. "
 ...

@bindings.add('c-t')
def _(event):
 " Do something if Control-T has been pressed. "
 ...

Note

c-q (control-q) and c-s (control-s) are often captured by the
terminal, because they were used traditionally for software flow control.
When this is enabled, the application will automatically freeze when
c-s is pressed, until c-q is pressed. It won’t be possible to
bind these keys.

In order to disable this, execute the following command in your shell, or even
add it to your .bashrc.

stty -ixon

Key bindings can even consist of a sequence of multiple keys. The binding is
only triggered when all the keys in this sequence are pressed.

@bindings.add('a', 'b')
def _(event):
 " Do something if 'a' is pressed and then 'b' is pressed. "
 ...

If the user presses only a, then nothing will happen until either a second
key (like b) has been pressed or until the timeout expires (see later).

List of special keys

Besides literal characters, any of the following keys can be used in a key
binding:

	Name

	Possible keys

	Escape
Shift + escape

	escape
s-escape

	Arrows

	left,
right,
up,
down

	Navigation

	home,
end,
delete,
pageup,
pagedown,
insert

	Control+letter

	c-a, c-b, c-c,
c-d, c-e, c-f,
c-g, c-h, c-i,
c-j, c-k, c-l,

c-m, c-n, c-o,
c-p, c-q, c-r,
c-s, c-t, c-u,
c-v, c-w, c-x,

c-y, c-z

	Control + number

	c-1, c-2, c-3,
c-4, c-5, c-6,
c-7, c-8, c-9,
c-0

	Control + arrow

	c-left,
c-right,
c-up,
c-down

	Other control
keys

	c-@,
c-\,
c-],
c-^,
c-_,
c-delete

	Shift + arrow

	s-left,
s-right,
s-up,
s-down

	Control + Shift +
arrow

	c-s-left,
c-s-right,
c-s-up,
c-s-down

	Other shift
keys

	s-delete,
s-tab

	F-keys

	f1, f2, f3,
f4, f5, f6,
f7, f8, f9,
f10, f11, f12,

f13, f14, f15,
f16, f17, f18,
f19, f20, f21,
f22, f23, f24

There are a couple of useful aliases as well:

	c-h

	backspace

	c-@

	c-space

	c-m

	enter

	c-i

	tab

Note

Note that the supported keys are limited to what typical VT100 terminals
offer. Binding c-7 (control + number 7) for instance is not
supported.

Binding alt+something, option+something or meta+something

Vt100 terminals translate the alt key into a leading escape key.
For instance, in order to handle alt-f, we have to handle
escape + f. Notice that we receive this as two individual keys.
This means that it’s exactly the same as first typing escape and then
typing f. Something this alt-key is also known as option or meta.

In code that looks as follows:

@bindings.add('escape', 'f')
def _(event):
 " Do something if alt-f or meta-f have been pressed. "

Wildcards

Sometimes you want to catch any key that follows after a certain key stroke.
This is possible by binding the ‘<any>’ key:

@bindings.add('a', '<any>')
def _(event):
 ...

This will handle aa, ab, ac, etcetera. The key binding can check the
event object for which keys exactly have been pressed.

Attaching a filter (condition)

In order to enable a key binding according to a certain condition, we have to
pass it a Filter, usually a
Condition instance. (Read more about
filters.)

from prompt_toolkit.filters import Condition

@Condition
def is_active():
 " Only activate key binding on the second half of each minute. "
 return datetime.datetime.now().second > 30

@bindings.add('c-t', filter=is_active)
def _(event):
 # ...
 pass

The key binding will be ignored when this condition is not satisfied.

ConditionalKeyBindings: Disabling a set of key bindings

Sometimes you want to enable or disable a whole set of key bindings according
to a certain condition. This is possible by wrapping it in a
ConditionalKeyBindings object.

from prompt_toolkit.key_binding import ConditionalKeyBindings

@Condition
def is_active():
 " Only activate key binding on the second half of each minute. "
 return datetime.datetime.now().second > 30

 bindings = ConditionalKeyBindings(
 key_bindings=my_bindings,
 filter=is_active)

If the condition is not satisfied, all the key bindings in my_bindings above
will be ignored.

Merging key bindings

Sometimes you have different parts of your application generate a collection of
key bindings. It is possible to merge them together through the
merge_key_bindings() function. This is
preferred above passing a KeyBindings
object around and having everyone populate it.

from prompt_toolkit.key_binding import merge_key_bindings

bindings = merge_key_bindings([
 bindings1,
 bindings2,
])

Eager

Usually not required, but if ever you have to override an existing key binding,
the eager flag can be useful.

Suppose that there is already an active binding for ab and you’d like to add
a second binding that only handles a. When the user presses only a,
prompt_toolkit has to wait for the next key press in order to know which
handler to call.

By passing the eager flag to this second binding, we are actually saying that
prompt_toolkit shouldn’t wait for longer matches when all the keys in this key
binding are matched. So, if a has been pressed, this second binding will be
called, even if there’s an active ab binding.

@bindings.add('a', 'b')
def binding_1(event):
 ...

@bindings.add('a', eager=True)
def binding_2(event):
 ...

This is mainly useful in order to conditionally override another binding.

Asyncio coroutines

Key binding handlers can be asyncio coroutines.

from prompt_toolkit.application import in_terminal

@bindings.add('x')
async def print_hello(event):
 """
 Pressing 'x' will print 5 times "hello" in the background above the
 prompt.
 """
 for i in range(5):
 # Print hello above the current prompt.
 async with in_terminal():
 print('hello')

 # Sleep, but allow further input editing in the meantime.
 await asyncio.sleep(1)

If the user accepts the input on the prompt, while this coroutine is not yet
finished , an asyncio.CancelledError exception will be thrown in this
coroutine.

Timeouts

There are two timeout settings that effect the handling of keys.

	Application.ttimeoutlen: Like Vim’s ttimeoutlen option.
When to flush the input (For flushing escape keys.) This is important on
terminals that use vt100 input. We can’t distinguish the escape key from for
instance the left-arrow key, if we don’t know what follows after “x1b”. This
little timer will consider “x1b” to be escape if nothing did follow in this
time span. This seems to work like the ttimeoutlen option in Vim.

	KeyProcessor.timeoutlen: like Vim’s timeoutlen option.
This can be None or a float. For instance, suppose that we have a key
binding AB and a second key binding A. If the uses presses A and then waits,
we don’t handle this binding yet (unless it was marked ‘eager’), because we
don’t know what will follow. This timeout is the maximum amount of time that
we wait until we call the handlers anyway. Pass None to disable this
timeout.

Recording macros

Both Emacs and Vi mode allow macro recording. By default, all key presses are
recorded during a macro, but it is possible to exclude certain keys by setting
the record_in_macro parameter to False:

@bindings.add('c-t', record_in_macro=False)
def _(event):
 # ...
 pass

Creating new Vi text objects and operators

We tried very hard to ship prompt_toolkit with as many as possible Vi text
objects and operators, so that text editing feels as natural as possible to Vi
users.

If you wish to create a new text object or key binding, that is actually
possible. Check the custom-vi-operator-and-text-object.py example for more
information.

Handling SIGINT

The SIGINT Unix signal can be handled by binding <sigint>. For instance:

@bindings.add('<sigint>')
def _(event):
 # ...
 pass

This will handle a SIGINT that was sent by an external application into the
process. Handling control-c should be done by binding c-c. (The terminal
input is set to raw mode, which means that a c-c won’t be translated into a
SIGINT.)

For a PromptSession, there is a default binding for <sigint> that
corresponds to c-c: it will exit the prompt, raising a
KeyboardInterrupt exception.

Processing .inputrc

GNU readline can be configured using an .inputrc configuration file. This file
contains key bindings as well as certain settings. Right now, prompt_toolkit
doesn’t support .inputrc, but it should be possible in the future.

More about styling

This page will attempt to explain in more detail how to use styling in
prompt_toolkit.

To some extent, it is very similar to how Pygments [http://pygments.org/]
styling works.

Style strings

Many user interface controls, like Window
accept a style argument which can be used to pass the formatting as a
string. For instance, we can select a foreground color:

	"fg:ansired" (ANSI color palette)

	"fg:ansiblue" (ANSI color palette)

	"fg:#ffaa33" (hexadecimal notation)

	"fg:darkred" (named color)

Or a background color:

	"bg:ansired" (ANSI color palette)

	"bg:#ffaa33" (hexadecimal notation)

Or we can add one of the following flags:

	"bold"

	"italic"

	"underline"

	"blink"

	"reverse" (reverse foreground and background on the terminal.)

	"hidden"

Or their negative variants:

	"nobold"

	"noitalic"

	"nounderline"

	"noblink"

	"noreverse"

	"nohidden"

All of these formatting options can be combined as well:

	"fg:ansiyellow bg:black bold underline"

The style string can be given to any user control directly, or to a
Container object from where it will propagate
to all its children. A style defined by a parent user control can be overridden
by any of its children. The parent can for instance say style="bold
underline" where a child overrides this style partly by specifying
style="nobold bg:ansired".

Note

These styles are actually compatible with
Pygments [http://pygments.org/] styles, with additional support for
reverse and blink. Further, we ignore flags like roman, sans,
mono and border.

The following ANSI colors are available (both for foreground and background):

Low intensity, dark. (One or two components 0x80, the other 0x00.)
ansiblack, ansired, ansigreen, ansiyellow, ansiblue
ansimagenta, ansicyan, ansigray

High intensity, bright.
ansibrightblack, ansibrightred, ansibrightgreen, ansibrightyellow
ansibrightblue, ansibrightmagenta, ansibrightcyan, ansiwhite

In order to know which styles are actually used in an application, it is
possible to call get_used_style_strings(), when the
application is done.

Class names

Like we do for web design, it is not a good habit to specify all styling
inline. Instead, we can attach class names to UI controls and have a style
sheet that refers to these class names. The
Style can be passed as an argument to the
Application.

from prompt_toolkit.layout import VSplit, Window
from prompt_toolkit.styles import Style

layout = VSplit([
 Window(BufferControl(...), style='class:left'),
 HSplit([
 Window(BufferControl(...), style='class:top'),
 Window(BufferControl(...), style='class:bottom'),
], style='class:right')
])

style = Style([
 ('left', 'bg:ansired'),
 ('top', 'fg:#00aaaa'),
 ('bottom', 'underline bold'),
])

It is possible to add multiple class names to an element. That way we’ll
combine the styling for these class names. Multiple classes can be passed by
using a comma separated list, or by using the class: prefix twice.

Window(BufferControl(...), style='class:left,bottom'),
Window(BufferControl(...), style='class:left class:bottom'),

It is possible to combine class names and inline styling. The order in which
the class names and inline styling is specified determines the order of
priority. In the following example for instance, we’ll take first the style of
the “header” class, and then override that with a red background color.

Window(BufferControl(...), style='class:header bg:red'),

Dot notation in class names

The dot operator has a special meaning in a class name. If we write:
style="class:a.b.c", then this will actually expand to the following:
style="class:a class:a.b class:a.b.c".

This is mainly added for Pygments [http://pygments.org/] lexers, which
specify “Tokens” like this, but it’s useful in other situations as well.

Multiple classes in a style sheet

A style sheet can be more complex as well. We can for instance specify two
class names. The following will underline the left part within the header, or
whatever has both the class “left” and the class “header” (the order doesn’t
matter).

style = Style([
 ('header left', 'underline'),
])

If you have a dotted class, then it’s required to specify the whole path in the
style sheet (just typing c or b.c doesn’t work if the class is
a.b.c):

style = Style([
 ('a.b.c', 'underline'),
])

It is possible to combine this:

style = Style([
 ('header body left.text', 'underline'),
])

Evaluation order of rules in a style sheet

The style is determined as follows:

	First, we concatenate all the style strings from the root control through all
the parents to the child in one big string. (Things at the right take
precedence anyway.)

E.g: class:body bg:#aaaaaa #000000 class:header.focused class:left.text.highlighted underline

	Then we go through this style from left to right, starting from the default
style. Inline styling is applied directly.

If we come across a class name, then we generate all combinations of the
class names that we collected so far (this one and all class names to the
left), and for each combination which includes the new class name, we look
for matching rules in our style sheet. All these rules are then applied
(later rules have higher priority).

If we find a dotted class name, this will be expanded in the individual names
(like class:left class:left.text class:left.text.highlighted), and all
these are applied like any class names.

	Then this final style is applied to this user interface element.

Using a dictionary as a style sheet

The order of the rules in a style sheet is meaningful, so typically, we use a
list of tuples to specify the style. But is also possible to use a dictionary
as a style sheet. This makes sense for Python 3.6, where dictionaries remember
their ordering. An OrderedDict works as well.

from prompt_toolkit.styles import Style

style = Style.from_dict({
 'header body left.text': 'underline',
})

Loading a style from Pygments

Pygments [http://pygments.org/] has a slightly different notation for
specifying styles, because it maps styling to Pygments “Tokens”. A Pygments
style can however be loaded and used as follows:

from prompt_toolkit.styles.pygments import style_from_pygments_cls
from pygments.styles import get_style_by_name

style = style_from_pygments_cls(get_style_by_name('monokai'))

Merging styles together

Multiple Style objects can be merged together as
follows:

from prompt_toolkit.styles import merge_styles

style = merge_styles([
 style1,
 style2,
 style3
])

Color depths

There are four different levels of color depths available:

	1 bit

	Black and white

	ColorDepth.DEPTH_1_BIT

	ColorDepth.MONOCHROME

	4 bit

	ANSI colors

	ColorDepth.DEPTH_4_BIT

	ColorDepth.ANSI_COLORS_ONLY

	8 bit

	256 colors

	ColorDepth.DEPTH_8_BIT

	ColorDepth.DEFAULT

	24 bit

	True colors

	ColorDepth.DEPTH_24_BIT

	ColorDepth.TRUE_COLOR

By default, 256 colors are used, because this is what most terminals support
these days. If the TERM enviroment variable is set to linux or
eterm-color, then only ANSI colors are used, because of these terminals. The 24
bit true color output needs to be enabled explicitely. When 4 bit color output
is chosen, all colors will be mapped to the closest ANSI color.

Setting the default color depth for any prompt_toolkit application can be done
by setting the PROMPT_TOOLKIT_COLOR_DEPTH environment variable. You could
for instance copy the following into your .bashrc file.

export PROMPT_TOOLKIT_COLOR_DEPTH=DEPTH_1_BIT
export PROMPT_TOOLKIT_COLOR_DEPTH=DEPTH_4_BIT
export PROMPT_TOOLKIT_COLOR_DEPTH=DEPTH_8_BIT
export PROMPT_TOOLKIT_COLOR_DEPTH=DEPTH_24_BIT

An application can also decide to set the color depth manually by passing a
ColorDepth value to the
Application object:

from prompt_toolkit.output.color_depth import ColorDepth

app = Application(
 color_depth=ColorDepth.ANSI_COLORS_ONLY,
 # ...
)

Style transformations

Prompt_toolkit supports a way to apply certain transformations to the styles
near the end of the rendering pipeline. This can be used for instance to change
certain colors to improve the rendering in some terminals.

One useful example is the
AdjustBrightnessStyleTransformation class,
which takes min_brightness and max_brightness as arguments which by default
have 0.0 and 1.0 as values. In the following code snippet, we increase the
minimum brightness to improve rendering on terminals with a dark background.

from prompt_toolkit.styles import AdjustBrightnessStyleTransformation

app = Application(
 style_transformation=AdjustBrightnessStyleTransformation(
 min_brightness=0.5, # Increase the minimum brightness.
 max_brightness=1.0,
)
 # ...
)

Filters

Many places in prompt_toolkit require a boolean value that can change over
time. For instance:

	to specify whether a part of the layout needs to be visible or not;

	or to decide whether a certain key binding needs to be active or not;

	or the wrap_lines option of
BufferControl;

	etcetera.

These booleans are often dynamic and can change at runtime. For instance, the
search toolbar should only be visible when the user is actually searching (when
the search buffer has the focus). The wrap_lines option could be changed
with a certain key binding. And that key binding could only work when the
default buffer got the focus.

In prompt_toolkit, we decided to reduce the amount of state in the whole
framework, and apply a simple kind of reactive programming to describe the flow
of these booleans as expressions. (It’s one-way only: if a key binding needs to
know whether it’s active or not, it can follow this flow by evaluating an
expression.)

The (abstract) base class is Filter, which
wraps an expression that takes no input and evaluates to a boolean. Getting the
state of a filter is done by simply calling it.

An example

The most obvious way to create such a Filter
instance is by creating a Condition instance
from a function. For instance, the following condition will evaluate to
True when the user is searching:

from prompt_toolkit.application.current import get_app
from prompt_toolkit.filters import Condition

is_searching = Condition(lambda: get_app().is_searching)

A different way of writing this, is by using the decorator syntax:

from prompt_toolkit.application.current import get_app
from prompt_toolkit.filters import Condition

@Condition
def is_searching():
 return get_app().is_searching

This filter can then be used in a key binding, like in the following snippet:

from prompt_toolkit.key_binding import KeyBindings

kb = KeyBindings()

@kb.add('c-t', filter=is_searching)
def _(event):
 # Do, something, but only when searching.
 pass

If we want to know the boolean value of this filter, we have to call it like a
function:

print(is_searching())

Built-in filters

There are many built-in filters, ready to use. All of them have a lowercase
name, because they represent the wrapped function underneath, and can be called
as a function.

	has_arg

	has_completions

	has_focus

	buffer_has_focus

	has_selection

	has_validation_error

	is_aborting

	is_done

	is_read_only

	is_multiline

	renderer_height_is_known

	in_editing_mode

	in_paste_mode

	vi_mode

	vi_navigation_mode

	vi_insert_mode

	vi_insert_multiple_mode

	vi_replace_mode

	vi_selection_mode

	vi_waiting_for_text_object_mode

	vi_digraph_mode

	emacs_mode

	emacs_insert_mode

	emacs_selection_mode

	is_searching

	control_is_searchable

	vi_search_direction_reversed

Combining filters

Filters can be chained with the & (AND) and | (OR) operators and
negated with the ~ (negation) operator.

Some examples:

from prompt_toolkit.key_binding import KeyBindings
from prompt_toolkit.filters import has_selection, has_selection

kb = KeyBindings()

@kb.add('c-t', filter=~is_searching)
def _(event):
 " Do something, but not while searching. "
 pass

@kb.add('c-t', filter=has_search | has_selection)
def _(event):
 " Do something, but only when searching or when there is a selection. "
 pass

to_filter

Finally, in many situations you want your code to expose an API that is able to
deal with both booleans as well as filters. For instance, when for most users a
boolean works fine because they don’t need to change the value over time, while
some advanced users want to be able this value to a certain setting or event
that does changes over time.

In order to handle both use cases, there is a utility called
to_filter().

This is a function that takes
either a boolean or an actual Filter
instance, and always returns a Filter.

from prompt_toolkit.filters.utils import to_filter

In each of the following three examples, 'f' will be a `Filter`
instance.
f = to_filter(True)
f = to_filter(False)
f = to_filter(Condition(lambda: True))
f = to_filter(has_search | has_selection)

The rendering flow

Understanding the rendering flow is important for understanding how
Container and
UIControl objects interact. We will demonstrate
it by explaining the flow around a
BufferControl.

Note

A BufferControl is a
UIControl for displaying the content of a
Buffer. A buffer is the object that holds
any editable region of text. Like all controls, it has to be wrapped into a
Window.

Let’s take the following code:

from prompt_toolkit.enums import DEFAULT_BUFFER
from prompt_toolkit.layout.containers import Window
from prompt_toolkit.layout.controls import BufferControl
from prompt_toolkit.buffer import Buffer

b = Buffer(name=DEFAULT_BUFFER)
Window(content=BufferControl(buffer=b))

What happens when a Renderer objects wants a
Container to be rendered on a certain
Screen?

The visualisation happens in several steps:

	The Renderer calls the
write_to_screen() method
of a Container.
This is a request to paint the layout in a rectangle of a certain size.

The Window object then requests
the UIControl to create a
UIContent instance (by calling
create_content()).
The user control receives the dimensions of the window, but can still
decide to create more or less content.

Inside the create_content()
method of UIControl, there are several
steps:

	First, the buffer’s text is passed to the
lex_document() method of a
Lexer. This returns a function which
for a given line number, returns a “formatted text list” for that line
(that’s a list of (style_string, text) tuples).

	This list is passed through a list of
Processor objects.
Each processor can do a transformation for each line.
(For instance, they can insert or replace some text, highlight the
selection or search string, etc…)

	The UIControl returns a
UIContent instance which
generates such a token lists for each lines.

The Window receives the
UIContent and then:

	It calculates the horizontal and vertical scrolling, if applicable
(if the content would take more space than what is available).

	The content is copied to the correct absolute position
Screen, as requested by the
Renderer. While doing this, the
Window can possible wrap the
lines, if line wrapping was configured.

Note that this process is lazy: if a certain line is not displayed in the
Window, then it is not requested
from the UIContent. And from there, the line is
not passed through the processors or even asked from the
Lexer.

Running on top of the asyncio event loop

Note

New in prompt_toolkit 3.0. (In prompt_toolkit 2.0 this was possible using a
work-around).

Prompt_toolkit 3.0 uses asyncio natively. Calling Application.run() will
automatically run the asyncio event loop.

If however you want to run a prompt_toolkit Application within an asyncio
environment, you have to call the run_async method, like this:

from prompt_toolkit.application import Application

async def main():
 # Define application.
 application = Application(
 ...
)

 result = await application.run_async()
 print(result)

asyncio.get_event_loop().run_until_complete(main())

Unit testing

Testing user interfaces is not always obvious. Here are a few tricks for
testing prompt_toolkit applications.

PosixPipeInput and DummyOutput

During the creation of a prompt_toolkit
Application, we can specify what input and
output device to be used. By default, these are output objects that correspond
with sys.stdin and sys.stdout. In unit tests however, we want to replace
these.

	For the input, we want a “pipe input”. This is an input device, in which we
can programatically send some input. It can be created with
create_pipe_input(), and that return either a
PosixPipeInput or a
Win32PipeInput depending on the
platform.

	For the output, we want a DummyOutput. This is
an output device that doesn’t render anything. We don’t want to render
anything to sys.stdout in the unit tests.

Note

Typically, we don’t want to test the bytes that are written to
sys.stdout, because these can change any time when the rendering
algorithm changes, and are not so meaningful anyway. Instead, we want to
test the return value from the
Application or test how data
structures (like text buffers) change over time.

So we programmatically feed some input to the input pipe, have the key
bindings process the input and then test what comes out of it.

In the following example we use a
PromptSession, but the same works for any
Application.

from prompt_toolkit.shortcuts import PromptSession
from prompt_toolkit.input import create_pipe_input
from prompt_toolkit.output import DummyOutput

def test_prompt_session():
 with create_pipe_input() as inp:
 inp.send_text("hello\n")
 session = PromptSession(
 input=inp,
 output=DummyOutput(),
)

 result = session.prompt()

 assert result == "hello"

In the above example, don’t forget to send the \n character to accept the
prompt, otherwise the Application will
wait forever for some more input to receive.

Using an AppSession

Sometimes it’s not convenient to pass input or output objects to the
Application, and in some situations it’s
not even possible at all.
This happens when these parameters are not passed down the call stack, through
all function calls.

An easy way to specify which input/output to use for all applications, is by
creating an AppSession with this
input/output and running all code in that
AppSession. This way, we don’t
need to inject it into every Application
or print_formatted_text() call.

Here is an example where we use
create_app_session():

from prompt_toolkit.application import create_app_session
from prompt_toolkit.shortcuts import print_formatted_text
from prompt_toolkit.output import DummyOutput

def test_something():
 with create_app_session(output=DummyOutput()):
 ...
 print_formatted_text('Hello world')
 ...

Pytest fixtures

In order to get rid of the boilerplate of creating the input, the
DummyOutput, and the
AppSession, we create a
single fixture that does it for every test. Something like this:

import pytest
from prompt_toolkit.application import create_app_session
from prompt_toolkit.input import create_pipe_input
from prompt_toolkit.output import DummyOutput

@pytest.fixture(autouse=True, scope="function")
def mock_input():
 with create_pipe_input() as pipe_input:
 with create_app_session(input=pipe_input, output=DummyOutput()):
 yield pipe_input

Type checking

Prompt_toolkit 3.0 is fully type annotated. This means that if a
prompt_toolkit application is typed too, it can be verified with mypy. This is
complementary to unit tests, but also great for testing for correctness.

Input hooks

Input hooks are a tool for inserting an external event loop into the
prompt_toolkit event loop, so that the other loop can run as long as
prompt_toolkit (actually asyncio) is idle. This is used in applications like
IPython [https://ipython.org/], so that GUI toolkits can display their
windows while we wait at the prompt for user input.

As a consequence, we will “trampoline” back and forth between two event loops.

Note

This will use a SelectorEventLoop, not the :class:
ProactorEventLoop (on Windows) due to the way the
implementation works (contributions are welcome to make that work).

from prompt_toolkit.eventloop.inputhook import set_eventloop_with_inputhook

def inputhook(inputhook_context):
 # At this point, we run the other loop. This loop is supposed to run
 # until either `inputhook_context.fileno` becomes ready for reading or
 # `inputhook_context.input_is_ready()` returns True.

 # A good way is to register this file descriptor in this other event
 # loop with a callback that stops this loop when this FD becomes ready.
 # There is no need to actually read anything from the FD.

 while True:
 ...

set_eventloop_with_inputhook(inputhook)

Any asyncio code at this point will now use this new loop, with input
hook installed.

Architecture

TODO: this is a little outdated.

+---+
| InputStream |
| =========== |
| - Parses the input stream coming from a VT100 |
| compatible terminal. Translates it into data input |
| and control characters. Calls the corresponding |
| handlers of the `InputStreamHandler` instance. |
| |
| e.g. Translate '\x1b[6~' into "Keys.PageDown", call |
| the `feed_key` method of `InputProcessor`. |
+---+
 |
 v
+---+
| InputStreamHandler |
| ================== |
| - Has a `Registry` of key bindings, it calls the |
| bindings according to the received keys and the |
| input mode. |
| |
| We have Vi and Emacs bindings.
+---+
 |
 v
+---+
| Key bindings |
| ============ |
| - Every key binding consists of a function that |
| receives an `Event` and usually it operates on |
| the `Buffer` object. (It could insert data or |
| move the cursor for example.) |
+---+
 |
 | Most of the key bindings operate on a `Buffer` object, but
 | they don't have to. They could also change the visibility
 | of a menu for instance, or change the color scheme.
 |
 v
+---+
| Buffer |
| ====== |
| - Contains a data structure to hold the current |
| input (text and cursor position). This class |
| implements all text manipulations and cursor |
| movements (Like e.g. cursor_forward, insert_char |
| or delete_word.) |
| |
| +---+ |
	Document (text, cursor_position)	
	================================	
	Accessed as the `document` property of the	
	`Buffer` class. This is a wrapper around the	
	text and cursor position, and contains	
	methods for querying this data , e.g. to give	
	the text before the cursor.	
+---+		
+---+
 |
 | Normally after every key press, the output will be
 | rendered again. This happens in the event loop of
 | the `Application` where `Renderer.render` is called.
 v
+---+
| Layout |
| ====== |
| - When the renderer should redraw, the renderer |
| asks the layout what the output should look like. |
| - The layout operates on a `Screen` object that he |
| received from the `Renderer` and will put the |
| toolbars, menus, highlighted content and prompt |
| in place. |
| |
| +---+ |
	Menus, toolbars, prompt	
	=======================	
+---+		
+---+
 |
 v
+---+
| Renderer |
| ======== |
| - Calculates the difference between the last output |
| and the new one and writes it to the terminal |
| output. |
+---+

The rendering pipeline

This document is an attempt to describe how prompt_toolkit applications are
rendered. It’s a complex but logical process that happens more or less after
every key stroke. We’ll go through all the steps from the point where the user
hits a key, until the character appears on the screen.

Waiting for user input

Most of the time when a prompt_toolkit application is running, it is idle. It’s
sitting in the event loop, waiting for some I/O to happen. The most important
kind of I/O we’re waiting for is user input. So, within the event loop, we have
one file descriptor that represents the input device from where we receive key
presses. The details are a little different between operating systems, but it
comes down to a selector (like select or epoll) which waits for one or more
file descriptor. The event loop is then responsible for calling the appropriate
feedback when one of the file descriptors becomes ready.

It is like that when the user presses a key: the input device becomes ready for
reading, and the appropriate callback is called. This is the read_from_input
function somewhere in application.py. It will read the input from the
Input object, by calling
read_keys().

Reading the user input

The actual reading is also operating system dependent. For instance, on a Linux
machine with a vt100 terminal, we read the input from the pseudo terminal
device, by calling os.read. This however returns a sequence of bytes. There
are two difficulties:

	The input could be UTF-8 encoded, and there is always the possibility that we
receive only a portion of a multi-byte character.

	vt100 key presses consist of multiple characters. For instance the “left
arrow” would generate something like \x1b[D. It could be that when we
read this input stream, that at some point we only get the first part of such
a key press, and we have to wait for the rest to arrive.

Both problems are implemented using state machines.

	The UTF-8 problem is solved using codecs.getincrementaldecoder, which is an
object in which we can feed the incoming bytes, and it will only return the
complete UTF-8 characters that we have so far. The rest is buffered for the
next read operation.

	Vt100 parsing is solved by the
Vt100Parser state machine. The
state machine itself is implemented using a generator. We feed the incoming
characters to the generator, and it will call the appropriate callback for
key presses once they arrive. One thing here to keep in mind is that the
characters for some key presses are a prefix of other key presses, like for
instance, escape (\x1b) is a prefix of the left arrow key (\x1b[D).
So for those, we don’t know what key is pressed until more data arrives or
when the input is flushed because of a timeout.

For Windows systems, it’s a little different. Here we use Win32 syscalls for
reading the console input.

Processing the key presses

The Key objects that we receive are then passed to the
KeyProcessor for matching
against the currently registered and active key bindings.

This is another state machine, because key bindings are linked to a sequence of
key presses. We cannot call the handler until all of these key presses arrive
and until we’re sure that this combination is not a prefix of another
combination. For instance, sometimes people bind jj (a double j key
press) to esc in Vi mode. This is convenient, but we want to make sure that
pressing j once only, followed by a different key will still insert the
j character as usual.

Now, there are hundreds of key bindings in prompt_toolkit (in ptpython, right
now we have 585 bindings). This is mainly caused by the way that Vi key
bindings are generated. In order to make this efficient, we keep a cache of
handlers which match certain sequences of keys.

Of course, key bindings also have filters attached for enabling/disabling them.
So, if at some point, we get a list of handlers from that cache, we still have
to discard the inactive bindings. Luckily, many bindings share exactly the same
filter, and we have to check every filter only once.

Read more about key bindings …

The key handlers

Once a key sequence is matched, the handler is called. This can do things like
text manipulation, changing the focus or anything else.

After the handler is called, the user interface is invalidated and rendered
again.

Rendering the user interface

The rendering is pretty complex for several reasons:

	We have to compute the dimensions of all user interface elements. Sometimes
they are given, but sometimes this requires calculating the size of
UIControl objects.

	It needs to be very efficient, because it’s something that happens on every
single key stroke.

	We should output as little as possible on stdout in order to reduce latency
on slow network connections and older terminals.

Calculating the total UI height

Unless the application is a full screen application, we have to know how much
vertical space is going to be consumed. The total available width is given, but
the vertical space is more dynamic. We do this by asking the root
Container object to calculate its preferred
height. If this is a VSplit or
HSplit then this involves recursively querying
the child objects for their preferred widths and heights and either summing it
up, or taking maximum values depending on the actual layout.
In the end, we get the preferred height, for which we make sure it’s at least
the distance from the cursor position to the bottom of the screen.

Painting to the screen

Then we create a Screen object. This is
like a canvas on which user controls can paint their content. The
write_to_screen() method of the root
Container is called with the screen dimensions. This will call recursively
write_to_screen() methods of nested
child containers, each time passing smaller dimensions while we traverse what
is a tree of Container objects.

The most inner containers are Window objects,
they will do the actual painting of the
UIControl to the screen. This involves line
wrapping the UIControl’s text and maybe scrolling the content horizontally or
vertically.

Rendering to stdout

Finally, when we have painted the screen, this needs to be rendered to stdout.
This is done by taking the difference of the previously rendered screen and the
new one. The algorithm that we have is heavily optimized to compute this
difference as quickly as possible, and call the appropriate output functions of
the Output back-end. At the end, it will
position the cursor in the right place.

Reference

Application

	
class prompt_toolkit.application.AppSession(input: Input | None = None, output: Output | None = None)

	An AppSession is an interactive session, usually connected to one terminal.
Within one such session, interaction with many applications can happen, one
after the other.

The input/output device is not supposed to change during one session.

Warning: Always use the create_app_session function to create an
instance, so that it gets activated correctly.

	Parameters:

	
	input – Use this as a default input for all applications
running in this session, unless an input is passed to the Application
explicitly.

	output – Use this as a default output.

	
class prompt_toolkit.application.Application(layout: Layout | None = None, style: BaseStyle | None = None, include_default_pygments_style: FilterOrBool = True, style_transformation: StyleTransformation | None = None, key_bindings: KeyBindingsBase | None = None, clipboard: Clipboard | None = None, full_screen: bool = False, color_depth: ColorDepth | Callable[[], ColorDepth | None] | None = None, mouse_support: FilterOrBool = False, enable_page_navigation_bindings: None | FilterOrBool = None, paste_mode: FilterOrBool = False, editing_mode: EditingMode = EditingMode.EMACS, erase_when_done: bool = False, reverse_vi_search_direction: FilterOrBool = False, min_redraw_interval: float | int | None = None, max_render_postpone_time: float | int | None = 0.01, refresh_interval: float | None = None, terminal_size_polling_interval: float | None = 0.5, cursor: AnyCursorShapeConfig = None, on_reset: ApplicationEventHandler[_AppResult] | None = None, on_invalidate: ApplicationEventHandler[_AppResult] | None = None, before_render: ApplicationEventHandler[_AppResult] | None = None, after_render: ApplicationEventHandler[_AppResult] | None = None, input: Input | None = None, output: Output | None = None)

	The main Application class!
This glues everything together.

	Parameters:

	
	layout – A Layout instance.

	key_bindings – KeyBindingsBase instance for
the key bindings.

	clipboard – Clipboard to use.

	full_screen – When True, run the application on the alternate screen buffer.

	color_depth – Any ColorDepth value, a callable that
returns a ColorDepth or None for default.

	erase_when_done – (bool) Clear the application output when it finishes.

	reverse_vi_search_direction – Normally, in Vi mode, a ‘/’ searches
forward and a ‘?’ searches backward. In Readline mode, this is usually
reversed.

	min_redraw_interval – Number of seconds to wait between redraws. Use
this for applications where invalidate is called a lot. This could cause
a lot of terminal output, which some terminals are not able to process.

None means that every invalidate will be scheduled right away
(which is usually fine).

When one invalidate is called, but a scheduled redraw of a previous
invalidate call has not been executed yet, nothing will happen in any
case.

	max_render_postpone_time – When there is high CPU (a lot of other
scheduled calls), postpone the rendering max x seconds. ‘0’ means:
don’t postpone. ‘.5’ means: try to draw at least twice a second.

	refresh_interval – Automatically invalidate the UI every so many
seconds. When None (the default), only invalidate when invalidate
has been called.

	terminal_size_polling_interval – Poll the terminal size every so many
seconds. Useful if the applications runs in a thread other then then
main thread where SIGWINCH can’t be handled, or on Windows.

Filters:

	Parameters:

	
	mouse_support – (Filter or
boolean). When True, enable mouse support.

	paste_mode – Filter or boolean.

	editing_mode – EditingMode.

	enable_page_navigation_bindings – When True, enable the page
navigation key bindings. These include both Emacs and Vi bindings like
page-up, page-down and so on to scroll through pages. Mostly useful for
creating an editor or other full screen applications. Probably, you
don’t want this for the implementation of a REPL. By default, this is
enabled if full_screen is set.

Callbacks (all of these should accept an
Application object as input.)

	Parameters:

	
	on_reset – Called during reset.

	on_invalidate – Called when the UI has been invalidated.

	before_render – Called right before rendering.

	after_render – Called right after rendering.

I/O:
(Note that the preferred way to change the input/output is by creating an
AppSession with the required input/output objects. If you need multiple
applications running at the same time, you have to create a separate
AppSession using a with create_app_session(): block.

	Parameters:

	
	input – Input instance.

	output – Output instance. (Probably
Vt100_Output or Win32Output.)

Usage:

app = Application(…)
app.run()

Or
await app.run_async()

	
async cancel_and_wait_for_background_tasks() → None

	Cancel all background tasks, and wait for the cancellation to complete.
If any of the background tasks raised an exception, this will also
propagate the exception.

(If we had nurseries like Trio, this would be the __aexit__ of a
nursery.)

	
property color_depth: ColorDepth

	The active ColorDepth.

The current value is determined as follows:

	If a color depth was given explicitly to this application, use that
value.

	Otherwise, fall back to the color depth that is reported by the
Output implementation. If the Output class was
created using output.defaults.create_output, then this value is
coming from the $PROMPT_TOOLKIT_COLOR_DEPTH environment variable.

	
cpr_not_supported_callback() → None

	Called when we don’t receive the cursor position response in time.

	
create_background_task(coroutine: Coroutine[Any, Any, None]) → Task[None]

	Start a background task (coroutine) for the running application. When
the Application terminates, unfinished background tasks will be
cancelled.

Given that we still support Python versions before 3.11, we can’t use
task groups (and exception groups), because of that, these background
tasks are not allowed to raise exceptions. If they do, we’ll call the
default exception handler from the event loop.

If at some point, we have Python 3.11 as the minimum supported Python
version, then we can use a TaskGroup (with the lifetime of
Application.run_async(), and run run the background tasks in there.

This is not threadsafe.

	
property current_buffer: Buffer

	The currently focused Buffer.

(This returns a dummy Buffer when none of the actual buffers
has the focus. In this case, it’s really not practical to check for
None values or catch exceptions every time.)

	
property current_search_state: SearchState

	Return the current SearchState. (The one for the focused
BufferControl.)

	
exit() → None

	
exit(*, result: _AppResult, style: str = '') → None

	
exit(*, exception: BaseException | type[BaseException], style: str = '') → None

	Exit application.

Note

If Application.exit is called before Application.run() is
called, then the Application won’t exit (because the
Application.future doesn’t correspond to the current run). Use a
pre_run hook and an event to synchronize the closing if there’s a
chance this can happen.

	Parameters:

	
	result – Set this result for the application.

	exception – Set this exception as the result for an application. For
a prompt, this is often EOFError or KeyboardInterrupt.

	style – Apply this style on the whole content when quitting,
often this is ‘class:exiting’ for a prompt. (Used when
erase_when_done is not set.)

	
get_used_style_strings() → list[str]

	Return a list of used style strings. This is helpful for debugging, and
for writing a new Style.

	
invalidate() → None

	Thread safe way of sending a repaint trigger to the input event loop.

	
property invalidated: bool

	True when a redraw operation has been scheduled.

	
property is_running: bool

	True when the application is currently active/running.

	
key_processor

	The InputProcessor instance.

	
print_text(text: AnyFormattedText, style: BaseStyle | None = None) → None

	Print a list of (style_str, text) tuples to the output.
(When the UI is running, this method has to be called through
run_in_terminal, otherwise it will destroy the UI.)

	Parameters:

	
	text – List of (style_str, text) tuples.

	style – Style class to use. Defaults to the active style in the CLI.

	
quoted_insert

	Quoted insert. This flag is set if we go into quoted insert mode.

	
render_counter

	Render counter. This one is increased every time the UI is rendered.
It can be used as a key for caching certain information during one
rendering.

	
reset() → None

	Reset everything, for reading the next input.

	
run(pre_run: Callable[[], None] | None = None, set_exception_handler: bool = True, handle_sigint: bool = True, in_thread: bool = False) → _AppResult

	A blocking ‘run’ call that waits until the UI is finished.

This will start the current asyncio event loop. If no loop is set for
the current thread, then it will create a new loop. If a new loop was
created, this won’t close the new loop (if in_thread=False).

	Parameters:

	
	pre_run – Optional callable, which is called right after the
“reset” of the application.

	set_exception_handler – When set, in case of an exception, go out
of the alternate screen and hide the application, display the
exception, and wait for the user to press ENTER.

	in_thread – When true, run the application in a background
thread, and block the current thread until the application
terminates. This is useful if we need to be sure the application
won’t use the current event loop (asyncio does not support nested
event loops). A new event loop will be created in this background
thread, and that loop will also be closed when the background
thread terminates. When this is used, it’s especially important to
make sure that all asyncio background tasks are managed through
get_appp().create_background_task(), so that unfinished tasks are
properly cancelled before the event loop is closed. This is used
for instance in ptpython.

	handle_sigint – Handle SIGINT signal. Call the key binding for
Keys.SIGINT. (This only works in the main thread.)

	
async run_async(pre_run: Callable[[], None] | None = None, set_exception_handler: bool = True, handle_sigint: bool = True, slow_callback_duration: float = 0.5) → _AppResult

	Run the prompt_toolkit Application
until exit() has been
called. Return the value that was passed to
exit().

This is the main entry point for a prompt_toolkit
Application and usually the only
place where the event loop is actually running.

	Parameters:

	
	pre_run – Optional callable, which is called right after the
“reset” of the application.

	set_exception_handler – When set, in case of an exception, go out
of the alternate screen and hide the application, display the
exception, and wait for the user to press ENTER.

	handle_sigint – Handle SIGINT signal if possible. This will call
the <sigint> key binding when a SIGINT is received. (This only
works in the main thread.)

	slow_callback_duration – Display warnings if code scheduled in
the asyncio event loop takes more time than this. The asyncio
default of 0.1 is sometimes not sufficient on a slow system,
because exceptionally, the drawing of the app, which happens in the
event loop, can take a bit longer from time to time.

	
async run_system_command(command: str, wait_for_enter: bool = True, display_before_text: AnyFormattedText = '', wait_text: str = 'Press ENTER to continue...') → None

	Run system command (While hiding the prompt. When finished, all the
output will scroll above the prompt.)

	Parameters:

	
	command – Shell command to be executed.

	wait_for_enter – FWait for the user to press enter, when the
command is finished.

	display_before_text – If given, text to be displayed before the
command executes.

	Returns:

	A Future object.

	
suspend_to_background(suspend_group: bool = True) → None

	(Not thread safe – to be called from inside the key bindings.)
Suspend process.

	Parameters:

	suspend_group – When true, suspend the whole process group.
(This is the default, and probably what you want.)

	
timeoutlen

	Like Vim’s timeoutlen option. This can be None or a float. For
instance, suppose that we have a key binding AB and a second key
binding A. If the uses presses A and then waits, we don’t handle
this binding yet (unless it was marked ‘eager’), because we don’t
know what will follow. This timeout is the maximum amount of time
that we wait until we call the handlers anyway. Pass None to
disable this timeout.

	
ttimeoutlen

	When to flush the input (For flushing escape keys.) This is important
on terminals that use vt100 input. We can’t distinguish the escape
key from for instance the left-arrow key, if we don’t know what follows
after “x1b”. This little timer will consider “x1b” to be escape if
nothing did follow in this time span.
This seems to work like the ttimeoutlen option in Vim.

	
vi_state

	Vi state. (For Vi key bindings.)

	
class prompt_toolkit.application.DummyApplication

	When no Application is running,
get_app() will run an instance of this DummyApplication instead.

	
prompt_toolkit.application.create_app_session(input: Input | None = None, output: Output | None = None) → Generator[AppSession, None, None]

	Create a separate AppSession.

This is useful if there can be multiple individual `AppSession`s going on.
Like in the case of an Telnet/SSH server.

	
prompt_toolkit.application.get_app() → Application[Any]

	Get the current active (running) Application.
An Application is active during the
Application.run_async() call.

We assume that there can only be one Application active at the
same time. There is only one terminal window, with only one stdin and
stdout. This makes the code significantly easier than passing around the
Application everywhere.

If no Application is running, then return by default a
DummyApplication. For practical reasons, we prefer to not raise
an exception. This way, we don’t have to check all over the place whether
an actual Application was returned.

(For applications like pymux where we can have more than one Application,
we’ll use a work-around to handle that.)

	
prompt_toolkit.application.get_app_or_none() → Application[Any] | None

	Get the current active (running) Application, or return None if no
application is running.

	
prompt_toolkit.application.in_terminal(render_cli_done: bool = False) → AsyncGenerator[None, None]

	Asynchronous context manager that suspends the current application and runs
the body in the terminal.

async def f():
 async with in_terminal():
 call_some_function()
 await call_some_async_function()

	
prompt_toolkit.application.run_in_terminal(func: Callable[[], _T], render_cli_done: bool = False, in_executor: bool = False) → Awaitable[_T]

	Run function on the terminal above the current application or prompt.

What this does is first hiding the prompt, then running this callable
(which can safely output to the terminal), and then again rendering the
prompt which causes the output of this function to scroll above the
prompt.

func is supposed to be a synchronous function. If you need an
asynchronous version of this function, use the in_terminal context
manager directly.

	Parameters:

	
	func – The callable to execute.

	render_cli_done – When True, render the interface in the
‘Done’ state first, then execute the function. If False,
erase the interface first.

	in_executor – When True, run in executor. (Use this for long
blocking functions, when you don’t want to block the event loop.)

	Returns:

	A Future.

	
prompt_toolkit.application.set_app(app: Application[Any]) → Generator[None, None, None]

	Context manager that sets the given Application active in an
AppSession.

This should only be called by the Application itself.
The application will automatically be active while its running. If you want
the application to be active in other threads/coroutines, where that’s not
the case, use contextvars.copy_context(), or use Application.context to
run it in the appropriate context.

Formatted text

Many places in prompt_toolkit can take either plain text, or formatted text.
For instance the prompt() function takes either
plain text or formatted text for the prompt. The
FormattedTextControl can also take either plain
text or formatted text.

In any case, there is an input that can either be just plain text (a string),
an HTML object, an ANSI object or a sequence of
(style_string, text) tuples. The to_formatted_text() conversion
function takes any of these and turns all of them into such a tuple sequence.

	
class prompt_toolkit.formatted_text.ANSI(value: str)

	ANSI formatted text.
Take something ANSI escaped text, for use as a formatted string. E.g.

ANSI('\x1b[31mhello \x1b[32mworld')

Characters between \001 and \002 are supposed to have a zero width
when printed, but these are literally sent to the terminal output. This can
be used for instance, for inserting Final Term prompt commands. They will
be translated into a prompt_toolkit ‘[ZeroWidthEscape]’ fragment.

	
format(*args: str, **kwargs: str) → ANSI

	Like str.format, but make sure that the arguments are properly
escaped. (No ANSI escapes can be injected.)

	
class prompt_toolkit.formatted_text.FormattedText(iterable=(), /)

	A list of (style, text) tuples.

(In some situations, this can also be (style, text, mouse_handler)
tuples.)

	
class prompt_toolkit.formatted_text.HTML(value: str)

	HTML formatted text.
Take something HTML-like, for use as a formatted string.

Turn something into red.
HTML('<style fg="ansired" bg="#00ff44">...</style>')

Italic, bold, underline and strike.
HTML('<i>...</i>')
HTML('...')
HTML('<u>...</u>')
HTML('<s>...</s>')

All HTML elements become available as a “class” in the style sheet.
E.g. <username>...</username> can be styled, by setting a style for
username.

	
format(*args: object, **kwargs: object) → HTML

	Like str.format, but make sure that the arguments are properly
escaped.

	
class prompt_toolkit.formatted_text.PygmentsTokens(token_list: list[tuple[Token, str]])

	Turn a pygments token list into a list of prompt_toolkit text fragments
((style_str, text) tuples).

	
class prompt_toolkit.formatted_text.Template(text: str)

	Template for string interpolation with formatted text.

Example:

Template(' ... {} ... ').format(HTML(...))

	Parameters:

	text – Plain text.

	
prompt_toolkit.formatted_text.fragment_list_len(fragments: StyleAndTextTuples) → int

	Return the amount of characters in this text fragment list.

	Parameters:

	fragments – List of (style_str, text) or
(style_str, text, mouse_handler) tuples.

	
prompt_toolkit.formatted_text.fragment_list_to_text(fragments: StyleAndTextTuples) → str

	Concatenate all the text parts again.

	Parameters:

	fragments – List of (style_str, text) or
(style_str, text, mouse_handler) tuples.

	
prompt_toolkit.formatted_text.fragment_list_width(fragments: StyleAndTextTuples) → int

	Return the character width of this text fragment list.
(Take double width characters into account.)

	Parameters:

	fragments – List of (style_str, text) or
(style_str, text, mouse_handler) tuples.

	
prompt_toolkit.formatted_text.is_formatted_text(value: object) → TypeGuard[AnyFormattedText]

	Check whether the input is valid formatted text (for use in assert
statements).
In case of a callable, it doesn’t check the return type.

	
prompt_toolkit.formatted_text.merge_formatted_text(items: Iterable[AnyFormattedText]) → AnyFormattedText

	Merge (Concatenate) several pieces of formatted text together.

	
prompt_toolkit.formatted_text.split_lines(fragments: StyleAndTextTuples) → Iterable[StyleAndTextTuples]

	Take a single list of (style_str, text) tuples and yield one such list for each
line. Just like str.split, this will yield at least one item.

	Parameters:

	fragments – List of (style_str, text) or (style_str, text, mouse_handler)
tuples.

	
prompt_toolkit.formatted_text.to_formatted_text(value: AnyFormattedText, style: str = '', auto_convert: bool = False) → FormattedText

	Convert the given value (which can be formatted text) into a list of text
fragments. (Which is the canonical form of formatted text.) The outcome is
always a FormattedText instance, which is a list of (style, text) tuples.

It can take a plain text string, an HTML or ANSI object, anything that
implements __pt_formatted_text__ or a callable that takes no arguments and
returns one of those.

	Parameters:

	
	style – An additional style string which is applied to all text
fragments.

	auto_convert – If True, also accept other types, and convert them
to a string first.

	
prompt_toolkit.formatted_text.to_plain_text(value: AnyFormattedText) → str

	Turn any kind of formatted text back into plain text.

Buffer

Data structures for the Buffer.
It holds the text, cursor position, history, etc…

	
class prompt_toolkit.buffer.Buffer(completer: Completer | None = None, auto_suggest: AutoSuggest | None = None, history: History | None = None, validator: Validator | None = None, tempfile_suffix: str | Callable[[], str] = '', tempfile: str | Callable[[], str] = '', name: str = '', complete_while_typing: Filter | bool = False, validate_while_typing: Filter | bool = False, enable_history_search: Filter | bool = False, document: Document | None = None, accept_handler: Callable[[Buffer], bool] | None = None, read_only: Filter | bool = False, multiline: Filter | bool = True, on_text_changed: Callable[[Buffer], None] | None = None, on_text_insert: Callable[[Buffer], None] | None = None, on_cursor_position_changed: Callable[[Buffer], None] | None = None, on_completions_changed: Callable[[Buffer], None] | None = None, on_suggestion_set: Callable[[Buffer], None] | None = None)

	The core data structure that holds the text and cursor position of the
current input line and implements all text manipulations on top of it. It
also implements the history, undo stack and the completion state.

	Parameters:

	
	completer – Completer instance.

	history – History instance.

	tempfile_suffix – The tempfile suffix (extension) to be used for the
“open in editor” function. For a Python REPL, this would be “.py”, so
that the editor knows the syntax highlighting to use. This can also be
a callable that returns a string.

	tempfile – For more advanced tempfile situations where you need
control over the subdirectories and filename. For a Git Commit Message,
this would be “.git/COMMIT_EDITMSG”, so that the editor knows the syntax
highlighting to use. This can also be a callable that returns a string.

	name – Name for this buffer. E.g. DEFAULT_BUFFER. This is mostly
useful for key bindings where we sometimes prefer to refer to a buffer
by their name instead of by reference.

	accept_handler – Called when the buffer input is accepted. (Usually
when the user presses enter.) The accept handler receives this
Buffer as input and should return True when the buffer text should be
kept instead of calling reset.

In case of a PromptSession for instance, we want to keep the text,
because we will exit the application, and only reset it during the next
run.

Events:

	Parameters:

	
	on_text_changed – When the buffer text changes. (Callable or None.)

	on_text_insert – When new text is inserted. (Callable or None.)

	on_cursor_position_changed – When the cursor moves. (Callable or None.)

	on_completions_changed – When the completions were changed. (Callable or None.)

	on_suggestion_set – When an auto-suggestion text has been set. (Callable or None.)

Filters:

	Parameters:

	
	complete_while_typing – Filter
or bool. Decide whether or not to do asynchronous autocompleting while
typing.

	validate_while_typing – Filter
or bool. Decide whether or not to do asynchronous validation while
typing.

	enable_history_search – Filter or
bool to indicate when up-arrow partial string matching is enabled. It
is advised to not enable this at the same time as
complete_while_typing, because when there is an autocompletion found,
the up arrows usually browse through the completions, rather than
through the history.

	read_only – Filter. When True,
changes will not be allowed.

	multiline – Filter or bool. When
not set, pressing Enter will call the accept_handler. Otherwise,
pressing Esc-Enter is required.

	
append_to_history() → None

	Append the current input to the history.

	
apply_completion(completion: Completion) → None

	Insert a given completion.

	
apply_search(search_state: SearchState, include_current_position: bool = True, count: int = 1) → None

	Apply search. If something is found, set working_index and
cursor_position.

	
auto_down(count: int = 1, go_to_start_of_line_if_history_changes: bool = False) → None

	If we’re not on the last line (of a multiline input) go a line down,
otherwise go forward in history. (If nothing is selected.)

	
auto_up(count: int = 1, go_to_start_of_line_if_history_changes: bool = False) → None

	If we’re not on the first line (of a multiline input) go a line up,
otherwise go back in history. (If nothing is selected.)

	
cancel_completion() → None

	Cancel completion, go back to the original text.

	
complete_next(count: int = 1, disable_wrap_around: bool = False) → None

	Browse to the next completions.
(Does nothing if there are no completion.)

	
complete_previous(count: int = 1, disable_wrap_around: bool = False) → None

	Browse to the previous completions.
(Does nothing if there are no completion.)

	
copy_selection(_cut: bool = False) → ClipboardData

	Copy selected text and return ClipboardData instance.

Notice that this doesn’t store the copied data on the clipboard yet.
You can store it like this:

data = buffer.copy_selection()
get_app().clipboard.set_data(data)

	
cursor_down(count: int = 1) → None

	(for multiline edit). Move cursor to the next line.

	
cursor_up(count: int = 1) → None

	(for multiline edit). Move cursor to the previous line.

	
cut_selection() → ClipboardData

	Delete selected text and return ClipboardData instance.

	
delete(count: int = 1) → str

	Delete specified number of characters and Return the deleted text.

	
delete_before_cursor(count: int = 1) → str

	Delete specified number of characters before cursor and return the
deleted text.

	
property document: Document

	Return Document instance from the
current text, cursor position and selection state.

	
document_for_search(search_state: SearchState) → Document

	Return a Document instance that has
the text/cursor position for this search, if we would apply it. This
will be used in the
BufferControl to display feedback while
searching.

	
get_search_position(search_state: SearchState, include_current_position: bool = True, count: int = 1) → int

	Get the cursor position for this search.
(This operation won’t change the working_index. It’s won’t go through
the history. Vi text objects can’t span multiple items.)

	
go_to_completion(index: int | None) → None

	Select a completion from the list of current completions.

	
go_to_history(index: int) → None

	Go to this item in the history.

	
history_backward(count: int = 1) → None

	Move backwards through history.

	
history_forward(count: int = 1) → None

	Move forwards through the history.

	Parameters:

	count – Amount of items to move forward.

	
insert_line_above(copy_margin: bool = True) → None

	Insert a new line above the current one.

	
insert_line_below(copy_margin: bool = True) → None

	Insert a new line below the current one.

	
insert_text(data: str, overwrite: bool = False, move_cursor: bool = True, fire_event: bool = True) → None

	Insert characters at cursor position.

	Parameters:

	fire_event – Fire on_text_insert event. This is mainly used to
trigger autocompletion while typing.

	
property is_returnable: bool

	True when there is something handling accept.

	
join_next_line(separator: str = ' ') → None

	Join the next line to the current one by deleting the line ending after
the current line.

	
join_selected_lines(separator: str = ' ') → None

	Join the selected lines.

	
load_history_if_not_yet_loaded() → None

	Create task for populating the buffer history (if not yet done).

Note:

This needs to be called from within the event loop of the
application, because history loading is async, and we need to be
sure the right event loop is active. Therefor, we call this method
in the `BufferControl.create_content`.

There are situations where prompt_toolkit applications are created
in one thread, but will later run in a different thread (Ptpython
is one example. The REPL runs in a separate thread, in order to
prevent interfering with a potential different event loop in the
main thread. The REPL UI however is still created in the main
thread.) We could decide to not support creating prompt_toolkit
objects in one thread and running the application in a different
thread, but history loading is the only place where it matters, and
this solves it.

	
newline(copy_margin: bool = True) → None

	Insert a line ending at the current position.

	
open_in_editor(validate_and_handle: bool = False) → Task[None]

	Open code in editor.

This returns a future, and runs in a thread executor.

	
paste_clipboard_data(data: ClipboardData, paste_mode: PasteMode = PasteMode.EMACS, count: int = 1) → None

	Insert the data from the clipboard.

	
reset(document: Document | None = None, append_to_history: bool = False) → None

	
	Parameters:

	append_to_history – Append current input to history first.

	
save_to_undo_stack(clear_redo_stack: bool = True) → None

	Safe current state (input text and cursor position), so that we can
restore it by calling undo.

	
set_document(value: Document, bypass_readonly: bool = False) → None

	Set Document instance. Like the
document property, but accept an bypass_readonly argument.

	Parameters:

	bypass_readonly – When True, don’t raise an
EditReadOnlyBuffer exception, even
when the buffer is read-only.

Warning

When this buffer is read-only and bypass_readonly was not passed,
the EditReadOnlyBuffer exception will be caught by the
KeyProcessor and is silently suppressed. This is important to
keep in mind when writing key bindings, because it won’t do what
you expect, and there won’t be a stack trace. Use try/finally
around this function if you need some cleanup code.

	
start_completion(select_first: bool = False, select_last: bool = False, insert_common_part: bool = False, complete_event: CompleteEvent | None = None) → None

	Start asynchronous autocompletion of this buffer.
(This will do nothing if a previous completion was still in progress.)

	
start_history_lines_completion() → None

	Start a completion based on all the other lines in the document and the
history.

	
start_selection(selection_type: SelectionType = SelectionType.CHARACTERS) → None

	Take the current cursor position as the start of this selection.

	
swap_characters_before_cursor() → None

	Swap the last two characters before the cursor.

	
transform_current_line(transform_callback: Callable[[str], str]) → None

	Apply the given transformation function to the current line.

	Parameters:

	transform_callback – callable that takes a string and return a new string.

	
transform_lines(line_index_iterator: Iterable[int], transform_callback: Callable[[str], str]) → str

	Transforms the text on a range of lines.
When the iterator yield an index not in the range of lines that the
document contains, it skips them silently.

To uppercase some lines:

new_text = transform_lines(range(5,10), lambda text: text.upper())

	Parameters:

	
	line_index_iterator – Iterator of line numbers (int)

	transform_callback – callable that takes the original text of a
line, and return the new text for this line.

	Returns:

	The new text.

	
transform_region(from_: int, to: int, transform_callback: Callable[[str], str]) → None

	Transform a part of the input string.

	Parameters:

	
	from – (int) start position.

	to – (int) end position.

	transform_callback – Callable which accepts a string and returns
the transformed string.

	
validate(set_cursor: bool = False) → bool

	Returns True if valid.

	Parameters:

	set_cursor – Set the cursor position, if an error was found.

	
validate_and_handle() → None

	Validate buffer and handle the accept action.

	
yank_last_arg(n: int | None = None) → None

	Like yank_nth_arg, but if no argument has been given, yank the last
word by default.

	
yank_nth_arg(n: int | None = None, _yank_last_arg: bool = False) → None

	Pick nth word from previous history entry (depending on current
yank_nth_arg_state) and insert it at current position. Rotate through
history if called repeatedly. If no n has been given, take the first
argument. (The second word.)

	Parameters:

	n – (None or int), The index of the word from the previous line
to take.

	
class prompt_toolkit.buffer.CompletionState(original_document: Document, completions: list[prompt_toolkit.completion.base.Completion] | None = None, complete_index: int | None = None)

	Immutable class that contains a completion state.

	
complete_index

	Position in the completions array.
This can be None to indicate “no completion”, the original text.

	
completions

	List of all the current Completion instances which are possible at
this point.

	
property current_completion: Completion | None

	Return the current completion, or return None when no completion is
selected.

	
go_to_index(index: int | None) → None

	Create a new CompletionState object with the new index.

When index is None deselect the completion.

	
new_text_and_position() → tuple[str, int]

	Return (new_text, new_cursor_position) for this completion.

	
original_document

	Document as it was when the completion started.

	
exception prompt_toolkit.buffer.EditReadOnlyBuffer

	Attempt editing of read-only Buffer.

	
prompt_toolkit.buffer.indent(buffer: Buffer, from_row: int, to_row: int, count: int = 1) → None

	Indent text of a Buffer object.

	
prompt_toolkit.buffer.reshape_text(buffer: Buffer, from_row: int, to_row: int) → None

	Reformat text, taking the width into account.
to_row is included.
(Vi ‘gq’ operator.)

	
prompt_toolkit.buffer.unindent(buffer: Buffer, from_row: int, to_row: int, count: int = 1) → None

	Unindent text of a Buffer object.

Selection

Data structures for the selection.

	
class prompt_toolkit.selection.SelectionState(original_cursor_position: int = 0, type: SelectionType = SelectionType.CHARACTERS)

	State of the current selection.

	Parameters:

	
	original_cursor_position – int

	type – SelectionType

	
class prompt_toolkit.selection.SelectionType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Type of selection.

	
BLOCK = 'BLOCK'

	A block selection. (Visual-Block in Vi.)

	
CHARACTERS = 'CHARACTERS'

	Characters. (Visual in Vi.)

	
LINES = 'LINES'

	Whole lines. (Visual-Line in Vi.)

Clipboard

	
class prompt_toolkit.clipboard.Clipboard

	Abstract baseclass for clipboards.
(An implementation can be in memory, it can share the X11 or Windows
keyboard, or can be persistent.)

	
abstract get_data() → ClipboardData

	Return clipboard data.

	
rotate() → None

	For Emacs mode, rotate the kill ring.

	
abstract set_data(data: ClipboardData) → None

	Set data to the clipboard.

	Parameters:

	data – ClipboardData instance.

	
set_text(text: str) → None

	Shortcut for setting plain text on clipboard.

	
class prompt_toolkit.clipboard.ClipboardData(text: str = '', type: SelectionType = SelectionType.CHARACTERS)

	Text on the clipboard.

	Parameters:

	
	text – string

	type – SelectionType

	
class prompt_toolkit.clipboard.DummyClipboard

	Clipboard implementation that doesn’t remember anything.

	
class prompt_toolkit.clipboard.DynamicClipboard(get_clipboard: Callable[[], Clipboard | None])

	Clipboard class that can dynamically returns any Clipboard.

	Parameters:

	get_clipboard – Callable that returns a Clipboard instance.

	
class prompt_toolkit.clipboard.InMemoryClipboard(data: ClipboardData | None = None, max_size: int = 60)

	Default clipboard implementation.
Just keep the data in memory.

This implements a kill-ring, for Emacs mode.

	
class prompt_toolkit.clipboard.pyperclip.PyperclipClipboard

	Clipboard that synchronizes with the Windows/Mac/Linux system clipboard,
using the pyperclip module.

Auto completion

	
class prompt_toolkit.completion.CompleteEvent(text_inserted: bool = False, completion_requested: bool = False)

	Event that called the completer.

	Parameters:

	
	text_inserted – When True, it means that completions are requested
because of a text insert. (Buffer.complete_while_typing.)

	completion_requested – When True, it means that the user explicitly
pressed the Tab key in order to view the completions.

These two flags can be used for instance to implement a completer that
shows some completions when Tab has been pressed, but not
automatically when the user presses a space. (Because of
complete_while_typing.)

	
completion_requested

	Used explicitly requested completion by pressing ‘tab’.

	
text_inserted

	Automatic completion while typing.

	
class prompt_toolkit.completion.Completer

	Base class for completer implementations.

	
abstract get_completions(document: Document, complete_event: CompleteEvent) → Iterable[Completion]

	This should be a generator that yields Completion instances.

If the generation of completions is something expensive (that takes a
lot of time), consider wrapping this Completer class in a
ThreadedCompleter. In that case, the completer algorithm runs in a
background thread and completions will be displayed as soon as they
arrive.

	Parameters:

	
	document – Document instance.

	complete_event – CompleteEvent instance.

	
async get_completions_async(document: Document, complete_event: CompleteEvent) → AsyncGenerator[Completion, None]

	Asynchronous generator for completions. (Probably, you won’t have to
override this.)

Asynchronous generator of Completion objects.

	
class prompt_toolkit.completion.Completion(text: str, start_position: int = 0, display: AnyFormattedText | None = None, display_meta: AnyFormattedText | None = None, style: str = '', selected_style: str = '')

	
	Parameters:

	
	text – The new string that will be inserted into the document.

	start_position – Position relative to the cursor_position where the
new text will start. The text will be inserted between the
start_position and the original cursor position.

	display – (optional string or formatted text) If the completion has
to be displayed differently in the completion menu.

	display_meta – (Optional string or formatted text) Meta information
about the completion, e.g. the path or source where it’s coming from.
This can also be a callable that returns a string.

	style – Style string.

	selected_style – Style string, used for a selected completion.
This can override the style parameter.

	
property display_meta: StyleAndTextTuples

	Return meta-text. (This is lazy when using a callable).

	
property display_meta_text: str

	The ‘meta’ field as plain text.

	
property display_text: str

	The ‘display’ field as plain text.

	
new_completion_from_position(position: int) → Completion

	(Only for internal use!)
Get a new completion by splitting this one. Used by Application when
it needs to have a list of new completions after inserting the common
prefix.

	
class prompt_toolkit.completion.ConditionalCompleter(completer: Completer, filter: Filter | bool)

	Wrapper around any other completer that will enable/disable the completions
depending on whether the received condition is satisfied.

	Parameters:

	
	completer – Completer instance.

	filter – Filter instance.

	
class prompt_toolkit.completion.DeduplicateCompleter(completer: Completer)

	Wrapper around a completer that removes duplicates. Only the first unique
completions are kept.

Completions are considered to be a duplicate if they result in the same
document text when they would be applied.

	
class prompt_toolkit.completion.DummyCompleter

	A completer that doesn’t return any completion.

	
class prompt_toolkit.completion.DynamicCompleter(get_completer: Callable[[], Completer | None])

	Completer class that can dynamically returns any Completer.

	Parameters:

	get_completer – Callable that returns a Completer instance.

	
class prompt_toolkit.completion.ExecutableCompleter

	Complete only executable files in the current path.

	
class prompt_toolkit.completion.FuzzyCompleter(completer: Completer, WORD: bool = False, pattern: str | None = None, enable_fuzzy: Filter | bool = True)

	Fuzzy completion.
This wraps any other completer and turns it into a fuzzy completer.

If the list of words is: [“leopard” , “gorilla”, “dinosaur”, “cat”, “bee”]
Then trying to complete “oar” would yield “leopard” and “dinosaur”, but not
the others, because they match the regular expression ‘o.*a.*r’.
Similar, in another application “djm” could expand to “django_migrations”.

The results are sorted by relevance, which is defined as the start position
and the length of the match.

Notice that this is not really a tool to work around spelling mistakes,
like what would be possible with difflib. The purpose is rather to have a
quicker or more intuitive way to filter the given completions, especially
when many completions have a common prefix.

Fuzzy algorithm is based on this post:
https://blog.amjith.com/fuzzyfinder-in-10-lines-of-python

	Parameters:

	
	completer – A Completer instance.

	WORD – When True, use WORD characters.

	pattern – Regex pattern which selects the characters before the
cursor that are considered for the fuzzy matching.

	enable_fuzzy – (bool or Filter) Enabled the fuzzy behavior. For
easily turning fuzzyness on or off according to a certain condition.

	
class prompt_toolkit.completion.FuzzyWordCompleter(words: list[str] | Callable[[], list[str]], meta_dict: dict[str, str] | None = None, WORD: bool = False)

	Fuzzy completion on a list of words.

(This is basically a WordCompleter wrapped in a FuzzyCompleter.)

	Parameters:

	
	words – List of words or callable that returns a list of words.

	meta_dict – Optional dict mapping words to their meta-information.

	WORD – When True, use WORD characters.

	
class prompt_toolkit.completion.NestedCompleter(options: dict[str, prompt_toolkit.completion.base.Completer | None], ignore_case: bool = True)

	Completer which wraps around several other completers, and calls any the
one that corresponds with the first word of the input.

By combining multiple NestedCompleter instances, we can achieve multiple
hierarchical levels of autocompletion. This is useful when WordCompleter
is not sufficient.

If you need multiple levels, check out the from_nested_dict classmethod.

	
classmethod from_nested_dict(data: Mapping[str, Any | Set[str] | None | Completer]) → NestedCompleter

	Create a NestedCompleter, starting from a nested dictionary data
structure, like this:

data = {
 'show': {
 'version': None,
 'interfaces': None,
 'clock': None,
 'ip': {'interface': {'brief'}}
 },
 'exit': None
 'enable': None
}

The value should be None if there is no further completion at some
point. If all values in the dictionary are None, it is also possible to
use a set instead.

Values in this data structure can be a completers as well.

	
class prompt_toolkit.completion.PathCompleter(only_directories: bool = False, get_paths: Callable[[], list[str]] | None = None, file_filter: Callable[[str], bool] | None = None, min_input_len: int = 0, expanduser: bool = False)

	Complete for Path variables.

	Parameters:

	
	get_paths – Callable which returns a list of directories to look into
when the user enters a relative path.

	file_filter – Callable which takes a filename and returns whether
this file should show up in the completion. None
when no filtering has to be done.

	min_input_len – Don’t do autocompletion when the input string is shorter.

	
class prompt_toolkit.completion.ThreadedCompleter(completer: Completer)

	Wrapper that runs the get_completions generator in a thread.

(Use this to prevent the user interface from becoming unresponsive if the
generation of completions takes too much time.)

The completions will be displayed as soon as they are produced. The user
can already select a completion, even if not all completions are displayed.

	
async get_completions_async(document: Document, complete_event: CompleteEvent) → AsyncGenerator[Completion, None]

	Asynchronous generator of completions.

	
class prompt_toolkit.completion.WordCompleter(words: list[str] | Callable[[], list[str]], ignore_case: bool = False, display_dict: Mapping[str, AnyFormattedText] | None = None, meta_dict: Mapping[str, AnyFormattedText] | None = None, WORD: bool = False, sentence: bool = False, match_middle: bool = False, pattern: Pattern[str] | None = None)

	Simple autocompletion on a list of words.

	Parameters:

	
	words – List of words or callable that returns a list of words.

	ignore_case – If True, case-insensitive completion.

	meta_dict – Optional dict mapping words to their meta-text. (This
should map strings to strings or formatted text.)

	WORD – When True, use WORD characters.

	sentence – When True, don’t complete by comparing the word before the
cursor, but by comparing all the text before the cursor. In this case,
the list of words is just a list of strings, where each string can
contain spaces. (Can not be used together with the WORD option.)

	match_middle – When True, match not only the start, but also in the
middle of the word.

	pattern – Optional compiled regex for finding the word before
the cursor to complete. When given, use this regex pattern instead of
default one (see document._FIND_WORD_RE)

	
prompt_toolkit.completion.get_common_complete_suffix(document: Document, completions: Sequence[Completion]) → str

	Return the common prefix for all completions.

	
prompt_toolkit.completion.merge_completers(completers: Sequence[Completer], deduplicate: bool = False) → Completer

	Combine several completers into one.

	Parameters:

	deduplicate – If True, wrap the result in a DeduplicateCompleter
so that completions that would result in the same text will be
deduplicated.

Document

The Document that implements all the text operations/querying.

	
class prompt_toolkit.document.Document(text: str = '', cursor_position: int | None = None, selection: SelectionState | None = None)

	This is a immutable class around the text and cursor position, and contains
methods for querying this data, e.g. to give the text before the cursor.

This class is usually instantiated by a Buffer
object, and accessed as the document property of that class.

	Parameters:

	
	text – string

	cursor_position – int

	selection – SelectionState

	
property char_before_cursor: str

	Return character before the cursor or an empty string.

	
property current_char: str

	Return character under cursor or an empty string.

	
property current_line: str

	Return the text on the line where the cursor is. (when the input
consists of just one line, it equals text.

	
property current_line_after_cursor: str

	Text from the cursor until the end of the line.

	
property current_line_before_cursor: str

	Text from the start of the line until the cursor.

	
property cursor_position: int

	The document cursor position.

	
property cursor_position_col: int

	Current column. (0-based.)

	
property cursor_position_row: int

	Current row. (0-based.)

	
cut_selection() → tuple[prompt_toolkit.document.Document, prompt_toolkit.clipboard.base.ClipboardData]

	Return a (Document, ClipboardData) tuple, where the
document represents the new document when the selection is cut, and the
clipboard data, represents whatever has to be put on the clipboard.

	
empty_line_count_at_the_end() → int

	Return number of empty lines at the end of the document.

	
end_of_paragraph(count: int = 1, after: bool = False) → int

	Return the end of the current paragraph. (Relative cursor position.)

	
find(sub: str, in_current_line: bool = False, include_current_position: bool = False, ignore_case: bool = False, count: int = 1) → int | None

	Find text after the cursor, return position relative to the cursor
position. Return None if nothing was found.

	Parameters:

	count – Find the n-th occurrence.

	
find_all(sub: str, ignore_case: bool = False) → list[int]

	Find all occurrences of the substring. Return a list of absolute
positions in the document.

	
find_backwards(sub: str, in_current_line: bool = False, ignore_case: bool = False, count: int = 1) → int | None

	Find text before the cursor, return position relative to the cursor
position. Return None if nothing was found.

	Parameters:

	count – Find the n-th occurrence.

	
find_boundaries_of_current_word(WORD: bool = False, include_leading_whitespace: bool = False, include_trailing_whitespace: bool = False) → tuple[int, int]

	Return the relative boundaries (startpos, endpos) of the current word under the
cursor. (This is at the current line, because line boundaries obviously
don’t belong to any word.)
If not on a word, this returns (0,0)

	
find_enclosing_bracket_left(left_ch: str, right_ch: str, start_pos: int | None = None) → int | None

	Find the left bracket enclosing current position. Return the relative
position to the cursor position.

When start_pos is given, don’t look past the position.

	
find_enclosing_bracket_right(left_ch: str, right_ch: str, end_pos: int | None = None) → int | None

	Find the right bracket enclosing current position. Return the relative
position to the cursor position.

When end_pos is given, don’t look past the position.

	
find_matching_bracket_position(start_pos: int | None = None, end_pos: int | None = None) → int

	Return relative cursor position of matching [, (, { or < bracket.

When start_pos or end_pos are given. Don’t look past the positions.

	
find_next_matching_line(match_func: Callable[[str], bool], count: int = 1) → int | None

	Look downwards for empty lines.
Return the line index, relative to the current line.

	
find_next_word_beginning(count: int = 1, WORD: bool = False) → int | None

	Return an index relative to the cursor position pointing to the start
of the next word. Return None if nothing was found.

	
find_next_word_ending(include_current_position: bool = False, count: int = 1, WORD: bool = False) → int | None

	Return an index relative to the cursor position pointing to the end
of the next word. Return None if nothing was found.

	
find_previous_matching_line(match_func: Callable[[str], bool], count: int = 1) → int | None

	Look upwards for empty lines.
Return the line index, relative to the current line.

	
find_previous_word_beginning(count: int = 1, WORD: bool = False) → int | None

	Return an index relative to the cursor position pointing to the start
of the previous word. Return None if nothing was found.

	
find_previous_word_ending(count: int = 1, WORD: bool = False) → int | None

	Return an index relative to the cursor position pointing to the end
of the previous word. Return None if nothing was found.

	
find_start_of_previous_word(count: int = 1, WORD: bool = False, pattern: Pattern[str] | None = None) → int | None

	Return an index relative to the cursor position pointing to the start
of the previous word. Return None if nothing was found.

	Parameters:

	pattern – (None or compiled regex). When given, use this regex
pattern.

	
get_column_cursor_position(column: int) → int

	Return the relative cursor position for this column at the current
line. (It will stay between the boundaries of the line in case of a
larger number.)

	
get_cursor_down_position(count: int = 1, preferred_column: int | None = None) → int

	Return the relative cursor position (character index) where we would be if the
user pressed the arrow-down button.

	Parameters:

	preferred_column – When given, go to this column instead of
staying at the current column.

	
get_cursor_left_position(count: int = 1) → int

	Relative position for cursor left.

	
get_cursor_right_position(count: int = 1) → int

	Relative position for cursor_right.

	
get_cursor_up_position(count: int = 1, preferred_column: int | None = None) → int

	Return the relative cursor position (character index) where we would be if the
user pressed the arrow-up button.

	Parameters:

	preferred_column – When given, go to this column instead of
staying at the current column.

	
get_end_of_document_position() → int

	Relative position for the end of the document.

	
get_end_of_line_position() → int

	Relative position for the end of this line.

	
get_start_of_document_position() → int

	Relative position for the start of the document.

	
get_start_of_line_position(after_whitespace: bool = False) → int

	Relative position for the start of this line.

	
get_word_before_cursor(WORD: bool = False, pattern: Pattern[str] | None = None) → str

	Give the word before the cursor.
If we have whitespace before the cursor this returns an empty string.

	Parameters:

	pattern – (None or compiled regex). When given, use this regex
pattern.

	
get_word_under_cursor(WORD: bool = False) → str

	Return the word, currently below the cursor.
This returns an empty string when the cursor is on a whitespace region.

	
has_match_at_current_position(sub: str) → bool

	True when this substring is found at the cursor position.

	
insert_after(text: str) → Document

	Create a new document, with this text inserted after the buffer.
It keeps selection ranges and cursor position in sync.

	
insert_before(text: str) → Document

	Create a new document, with this text inserted before the buffer.
It keeps selection ranges and cursor position in sync.

	
property is_cursor_at_the_end: bool

	True when the cursor is at the end of the text.

	
property is_cursor_at_the_end_of_line: bool

	True when the cursor is at the end of this line.

	
last_non_blank_of_current_line_position() → int

	Relative position for the last non blank character of this line.

	
property leading_whitespace_in_current_line: str

	The leading whitespace in the left margin of the current line.

	
property line_count: int

	Return the number of lines in this document. If the document ends
with a trailing n, that counts as the beginning of a new line.

	
property lines: list[str]

	Array of all the lines.

	
property lines_from_current: list[str]

	Array of the lines starting from the current line, until the last line.

	
property on_first_line: bool

	True when we are at the first line.

	
property on_last_line: bool

	True when we are at the last line.

	
paste_clipboard_data(data: ClipboardData, paste_mode: PasteMode = PasteMode.EMACS, count: int = 1) → Document

	Return a new Document instance which contains the result if
we would paste this data at the current cursor position.

	Parameters:

	
	paste_mode – Where to paste. (Before/after/emacs.)

	count – When >1, Paste multiple times.

	
property selection: SelectionState | None

	SelectionState object.

	
selection_range() → tuple[int, int]

	Return (from, to) tuple of the selection.
start and end position are included.

This doesn’t take the selection type into account. Use
selection_ranges instead.

	
selection_range_at_line(row: int) → tuple[int, int] | None

	If the selection spans a portion of the given line, return a (from, to) tuple.

The returned upper boundary is not included in the selection, so
(0, 0) is an empty selection. (0, 1), is a one character selection.

Returns None if the selection doesn’t cover this line at all.

	
selection_ranges() → Iterable[tuple[int, int]]

	Return a list of (from, to) tuples for the selection or none if
nothing was selected. The upper boundary is not included.

This will yield several (from, to) tuples in case of a BLOCK selection.
This will return zero ranges, like (8,8) for empty lines in a block
selection.

	
start_of_paragraph(count: int = 1, before: bool = False) → int

	Return the start of the current paragraph. (Relative cursor position.)

	
property text: str

	The document text.

	
translate_index_to_position(index: int) → tuple[int, int]

	Given an index for the text, return the corresponding (row, col) tuple.
(0-based. Returns (0, 0) for index=0.)

	
translate_row_col_to_index(row: int, col: int) → int

	Given a (row, col) tuple, return the corresponding index.
(Row and col params are 0-based.)

Negative row/col values are turned into zero.

Enums

	
prompt_toolkit.enums.DEFAULT_BUFFER = 'DEFAULT_BUFFER'

	Name of the default buffer.

	
prompt_toolkit.enums.SEARCH_BUFFER = 'SEARCH_BUFFER'

	Name of the search buffer.

	
prompt_toolkit.enums.SYSTEM_BUFFER = 'SYSTEM_BUFFER'

	Name of the system buffer.

History

Implementations for the history of a Buffer.

	NOTE: There is no DynamicHistory:
	This doesn’t work well, because the Buffer needs to be able to attach
an event handler to the event when a history entry is loaded. This
loading can be done asynchronously and making the history swappable would
probably break this.

	
class prompt_toolkit.history.DummyHistory

	History object that doesn’t remember anything.

	
class prompt_toolkit.history.FileHistory(filename: str)

	History class that stores all strings in a file.

	
class prompt_toolkit.history.History

	Base History class.

This also includes abstract methods for loading/storing history.

	
append_string(string: str) → None

	Add string to the history.

	
get_strings() → list[str]

	Get the strings from the history that are loaded so far.
(In order. Oldest item first.)

	
async load() → AsyncGenerator[str, None]

	Load the history and yield all the entries in reverse order (latest,
most recent history entry first).

This method can be called multiple times from the Buffer to
repopulate the history when prompting for a new input. So we are
responsible here for both caching, and making sure that strings that
were were appended to the history will be incorporated next time this
method is called.

	
abstract load_history_strings() → Iterable[str]

	This should be a generator that yields str instances.

It should yield the most recent items first, because they are the most
important. (The history can already be used, even when it’s only
partially loaded.)

	
abstract store_string(string: str) → None

	Store the string in persistent storage.

	
class prompt_toolkit.history.InMemoryHistory(history_strings: Sequence[str] | None = None)

	History class that keeps a list of all strings in memory.

In order to prepopulate the history, it’s possible to call either
append_string for all items or pass a list of strings to __init__ here.

	
class prompt_toolkit.history.ThreadedHistory(history: History)

	Wrapper around History implementations that run the load() generator in
a thread.

Use this to increase the start-up time of prompt_toolkit applications.
History entries are available as soon as they are loaded. We don’t have to
wait for everything to be loaded.

	
async load() → AsyncGenerator[str, None]

	Like History.load(), but call `self.load_history_strings() in a
background thread.

Keys

	
class prompt_toolkit.keys.Keys(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	List of keys for use in key bindings.

Note that this is an “StrEnum”, all values can be compared against
strings.

Style

Styling for prompt_toolkit applications.

	
class prompt_toolkit.styles.AdjustBrightnessStyleTransformation(min_brightness: Callable[[], float] | float = 0.0, max_brightness: Callable[[], float] | float = 1.0)

	Adjust the brightness to improve the rendering on either dark or light
backgrounds.

For dark backgrounds, it’s best to increase min_brightness. For light
backgrounds it’s best to decrease max_brightness. Usually, only one
setting is adjusted.

This will only change the brightness for text that has a foreground color
defined, but no background color. It works best for 256 or true color
output.

Note

Notice that there is no universal way to detect whether the
application is running in a light or dark terminal. As a
developer of an command line application, you’ll have to make
this configurable for the user.

	Parameters:

	
	min_brightness – Float between 0.0 and 1.0 or a callable that returns
a float.

	max_brightness – Float between 0.0 and 1.0 or a callable that returns
a float.

	
class prompt_toolkit.styles.Attrs(color, bgcolor, bold, underline, strike, italic, blink, reverse, hidden)

	
	
bgcolor: str | None

	Alias for field number 1

	
blink: bool | None

	Alias for field number 6

	
bold: bool | None

	Alias for field number 2

	
color: str | None

	Alias for field number 0

	
hidden: bool | None

	Alias for field number 8

	
italic: bool | None

	Alias for field number 5

	
reverse: bool | None

	Alias for field number 7

	
strike: bool | None

	Alias for field number 4

	
underline: bool | None

	Alias for field number 3

	
class prompt_toolkit.styles.BaseStyle

	Abstract base class for prompt_toolkit styles.

	
abstract get_attrs_for_style_str(style_str: str, default: Attrs = Attrs(color='', bgcolor='', bold=False, underline=False, strike=False, italic=False, blink=False, reverse=False, hidden=False)) → Attrs

	Return Attrs for the given style string.

	Parameters:

	
	style_str – The style string. This can contain inline styling as
well as classnames (e.g. “class:title”).

	default – Attrs to be used if no styling was defined.

	
abstract invalidation_hash() → Hashable

	Invalidation hash for the style. When this changes over time, the
renderer knows that something in the style changed, and that everything
has to be redrawn.

	
abstract property style_rules: list[tuple[str, str]]

	The list of style rules, used to create this style.
(Required for DynamicStyle and _MergedStyle to work.)

	
class prompt_toolkit.styles.ConditionalStyleTransformation(style_transformation: StyleTransformation, filter: Filter | bool)

	Apply the style transformation depending on a condition.

	
class prompt_toolkit.styles.DummyStyle

	A style that doesn’t style anything.

	
class prompt_toolkit.styles.DummyStyleTransformation

	Don’t transform anything at all.

	
class prompt_toolkit.styles.DynamicStyle(get_style: Callable[[], BaseStyle | None])

	Style class that can dynamically returns an other Style.

	Parameters:

	get_style – Callable that returns a Style instance.

	
class prompt_toolkit.styles.DynamicStyleTransformation(get_style_transformation: Callable[[], StyleTransformation | None])

	StyleTransformation class that can dynamically returns any
StyleTransformation.

	Parameters:

	get_style_transformation – Callable that returns a
StyleTransformation instance.

	
class prompt_toolkit.styles.Priority(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	The priority of the rules, when a style is created from a dictionary.

In a Style, rules that are defined later will always override previous
defined rules, however in a dictionary, the key order was arbitrary before
Python 3.6. This means that the style could change at random between rules.

We have two options:

	
	DICT_KEY_ORDER: This means, iterate through the dictionary, and take
	the key/value pairs in order as they come. This is a good option if you
have Python >3.6. Rules at the end will override rules at the beginning.

	MOST_PRECISE: keys that are defined with most precision will get higher
priority. (More precise means: more elements.)

	
class prompt_toolkit.styles.Style(style_rules: list[tuple[str, str]])

	Create a Style instance from a list of style rules.

The style_rules is supposed to be a list of (‘classnames’, ‘style’) tuples.
The classnames are a whitespace separated string of class names and the
style string is just like a Pygments style definition, but with a few
additions: it supports ‘reverse’ and ‘blink’.

Later rules always override previous rules.

Usage:

Style([
 ('title', '#ff0000 bold underline'),
 ('something-else', 'reverse'),
 ('class1 class2', 'reverse'),
])

The from_dict classmethod is similar, but takes a dictionary as input.

	
classmethod from_dict(style_dict: dict[str, str], priority: Priority = Priority.DICT_KEY_ORDER) → Style

	
	Parameters:

	
	style_dict – Style dictionary.

	priority – Priority value.

	
get_attrs_for_style_str(style_str: str, default: Attrs = Attrs(color='', bgcolor='', bold=False, underline=False, strike=False, italic=False, blink=False, reverse=False, hidden=False)) → Attrs

	Get Attrs for the given style string.

	
class prompt_toolkit.styles.StyleTransformation

	Base class for any style transformation.

	
invalidation_hash() → Hashable

	When this changes, the cache should be invalidated.

	
abstract transform_attrs(attrs: Attrs) → Attrs

	Take an Attrs object and return a new Attrs object.

Remember that the color formats can be either “ansi…” or a 6 digit
lowercase hexadecimal color (without ‘#’ prefix).

	
class prompt_toolkit.styles.SwapLightAndDarkStyleTransformation

	Turn dark colors into light colors and the other way around.

This is meant to make color schemes that work on a dark background usable
on a light background (and the other way around).

Notice that this doesn’t swap foreground and background like “reverse”
does. It turns light green into dark green and the other way around.
Foreground and background colors are considered individually.

Also notice that when <reverse> is used somewhere and no colors are given
in particular (like what is the default for the bottom toolbar), then this
doesn’t change anything. This is what makes sense, because when the
‘default’ color is chosen, it’s what works best for the terminal, and
reverse works good with that.

	
transform_attrs(attrs: Attrs) → Attrs

	Return the Attrs used when opposite luminosity should be used.

	
prompt_toolkit.styles.merge_style_transformations(style_transformations: Sequence[StyleTransformation]) → StyleTransformation

	Merge multiple transformations together.

	
prompt_toolkit.styles.merge_styles(styles: list[prompt_toolkit.styles.base.BaseStyle]) → _MergedStyle

	Merge multiple Style objects.

	
prompt_toolkit.styles.pygments_token_to_classname(token: Token) → str

	Turn e.g. Token.Name.Exception into ‘pygments.name.exception’.

(Our Pygments lexer will also turn the tokens that pygments produces in a
prompt_toolkit list of fragments that match these styling rules.)

	
prompt_toolkit.styles.style_from_pygments_cls(pygments_style_cls: type[PygmentsStyle]) → Style

	Shortcut to create a Style instance from a Pygments style class
and a style dictionary.

Example:

from prompt_toolkit.styles.from_pygments import style_from_pygments_cls
from pygments.styles import get_style_by_name
style = style_from_pygments_cls(get_style_by_name('monokai'))

	Parameters:

	pygments_style_cls – Pygments style class to start from.

	
prompt_toolkit.styles.style_from_pygments_dict(pygments_dict: dict[Token, str]) → Style

	Create a Style instance from a Pygments style dictionary.
(One that maps Token objects to style strings.)

Shortcuts

	
class prompt_toolkit.shortcuts.CompleteStyle(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	How to display autocompletions for the prompt.

	
class prompt_toolkit.shortcuts.ProgressBar(title: AnyFormattedText = None, formatters: Sequence[Formatter] | None = None, bottom_toolbar: AnyFormattedText = None, style: BaseStyle | None = None, key_bindings: KeyBindings | None = None, cancel_callback: Callable[[], None] | None = None, file: TextIO | None = None, color_depth: ColorDepth | None = None, output: Output | None = None, input: Input | None = None)

	Progress bar context manager.

Usage

with ProgressBar(...) as pb:
 for item in pb(data):
 ...

	Parameters:

	
	title – Text to be displayed above the progress bars. This can be a
callable or formatted text as well.

	formatters – List of Formatter instances.

	bottom_toolbar – Text to be displayed in the bottom toolbar. This
can be a callable or formatted text.

	style – prompt_toolkit.styles.BaseStyle instance.

	key_bindings – KeyBindings instance.

	cancel_callback – Callback function that’s called when control-c is
pressed by the user. This can be used for instance to start “proper”
cancellation if the wrapped code supports it.

	file – The file object used for rendering, by default sys.stderr is used.

	color_depth – prompt_toolkit ColorDepth instance.

	output – Output instance.

	input – Input instance.

	
class prompt_toolkit.shortcuts.PromptSession(message: AnyFormattedText = '', *, multiline: FilterOrBool = False, wrap_lines: FilterOrBool = True, is_password: FilterOrBool = False, vi_mode: bool = False, editing_mode: EditingMode = EditingMode.EMACS, complete_while_typing: FilterOrBool = True, validate_while_typing: FilterOrBool = True, enable_history_search: FilterOrBool = False, search_ignore_case: FilterOrBool = False, lexer: Lexer | None = None, enable_system_prompt: FilterOrBool = False, enable_suspend: FilterOrBool = False, enable_open_in_editor: FilterOrBool = False, validator: Validator | None = None, completer: Completer | None = None, complete_in_thread: bool = False, reserve_space_for_menu: int = 8, complete_style: CompleteStyle = CompleteStyle.COLUMN, auto_suggest: AutoSuggest | None = None, style: BaseStyle | None = None, style_transformation: StyleTransformation | None = None, swap_light_and_dark_colors: FilterOrBool = False, color_depth: ColorDepth | None = None, cursor: AnyCursorShapeConfig = None, include_default_pygments_style: FilterOrBool = True, history: History | None = None, clipboard: Clipboard | None = None, prompt_continuation: PromptContinuationText | None = None, rprompt: AnyFormattedText = None, bottom_toolbar: AnyFormattedText = None, mouse_support: FilterOrBool = False, input_processors: list[Processor] | None = None, placeholder: AnyFormattedText | None = None, key_bindings: KeyBindingsBase | None = None, erase_when_done: bool = False, tempfile_suffix: str | Callable[[], str] | None = '.txt', tempfile: str | Callable[[], str] | None = None, refresh_interval: float = 0, input: Input | None = None, output: Output | None = None)

	PromptSession for a prompt application, which can be used as a GNU Readline
replacement.

This is a wrapper around a lot of prompt_toolkit functionality and can
be a replacement for raw_input.

All parameters that expect “formatted text” can take either just plain text
(a unicode object), a list of (style_str, text) tuples or an HTML object.

Example usage:

s = PromptSession(message='>')
text = s.prompt()

	Parameters:

	
	message – Plain text or formatted text to be shown before the prompt.
This can also be a callable that returns formatted text.

	multiline – bool or Filter.
When True, prefer a layout that is more adapted for multiline input.
Text after newlines is automatically indented, and search/arg input is
shown below the input, instead of replacing the prompt.

	wrap_lines – bool or Filter.
When True (the default), automatically wrap long lines instead of
scrolling horizontally.

	is_password – Show asterisks instead of the actual typed characters.

	editing_mode – EditingMode.VI or EditingMode.EMACS.

	vi_mode – bool, if True, Identical to editing_mode=EditingMode.VI.

	complete_while_typing – bool or
Filter. Enable autocompletion while
typing.

	validate_while_typing – bool or
Filter. Enable input validation while
typing.

	enable_history_search – bool or
Filter. Enable up-arrow parting
string matching.

	search_ignore_case – Filter. Search case insensitive.

	lexer – Lexer to be used for the
syntax highlighting.

	validator – Validator instance
for input validation.

	completer – Completer instance
for input completion.

	complete_in_thread – bool or
Filter. Run the completer code in a
background thread in order to avoid blocking the user interface.
For CompleteStyle.READLINE_LIKE, this setting has no effect. There
we always run the completions in the main thread.

	reserve_space_for_menu – Space to be reserved for displaying the menu.
(0 means that no space needs to be reserved.)

	auto_suggest – AutoSuggest
instance for input suggestions.

	style – Style instance for the color scheme.

	include_default_pygments_style – bool or
Filter. Tell whether the default
styling for Pygments lexers has to be included. By default, this is
true, but it is recommended to be disabled if another Pygments style is
passed as the style argument, otherwise, two Pygments styles will be
merged.

	style_transformation – StyleTransformation instance.

	swap_light_and_dark_colors – bool or
Filter. When enabled, apply
SwapLightAndDarkStyleTransformation.
This is useful for switching between dark and light terminal
backgrounds.

	enable_system_prompt – bool or
Filter. Pressing Meta+’!’ will show
a system prompt.

	enable_suspend – bool or Filter.
Enable Control-Z style suspension.

	enable_open_in_editor – bool or
Filter. Pressing ‘v’ in Vi mode or
C-X C-E in emacs mode will open an external editor.

	history – History instance.

	clipboard – Clipboard instance.
(e.g. InMemoryClipboard)

	rprompt – Text or formatted text to be displayed on the right side.
This can also be a callable that returns (formatted) text.

	bottom_toolbar – Formatted text or callable which is supposed to
return formatted text.

	prompt_continuation – Text that needs to be displayed for a multiline
prompt continuation. This can either be formatted text or a callable
that takes a prompt_width, line_number and wrap_count as input
and returns formatted text. When this is None (the default), then
prompt_width spaces will be used.

	complete_style – CompleteStyle.COLUMN,
CompleteStyle.MULTI_COLUMN or CompleteStyle.READLINE_LIKE.

	mouse_support – bool or Filter
to enable mouse support.

	placeholder – Text to be displayed when no input has been given
yet. Unlike the default parameter, this won’t be returned as part of
the output ever. This can be formatted text or a callable that returns
formatted text.

	refresh_interval – (number; in seconds) When given, refresh the UI
every so many seconds.

	input – Input object. (Note that the preferred way to change the
input/output is by creating an AppSession.)

	output – Output object.

	
prompt(message: AnyFormattedText | None = None, *, editing_mode: EditingMode | None = None, refresh_interval: float | None = None, vi_mode: bool | None = None, lexer: Lexer | None = None, completer: Completer | None = None, complete_in_thread: bool | None = None, is_password: bool | None = None, key_bindings: KeyBindingsBase | None = None, bottom_toolbar: AnyFormattedText | None = None, style: BaseStyle | None = None, color_depth: ColorDepth | None = None, cursor: AnyCursorShapeConfig | None = None, include_default_pygments_style: FilterOrBool | None = None, style_transformation: StyleTransformation | None = None, swap_light_and_dark_colors: FilterOrBool | None = None, rprompt: AnyFormattedText | None = None, multiline: FilterOrBool | None = None, prompt_continuation: PromptContinuationText | None = None, wrap_lines: FilterOrBool | None = None, enable_history_search: FilterOrBool | None = None, search_ignore_case: FilterOrBool | None = None, complete_while_typing: FilterOrBool | None = None, validate_while_typing: FilterOrBool | None = None, complete_style: CompleteStyle | None = None, auto_suggest: AutoSuggest | None = None, validator: Validator | None = None, clipboard: Clipboard | None = None, mouse_support: FilterOrBool | None = None, input_processors: list[Processor] | None = None, placeholder: AnyFormattedText | None = None, reserve_space_for_menu: int | None = None, enable_system_prompt: FilterOrBool | None = None, enable_suspend: FilterOrBool | None = None, enable_open_in_editor: FilterOrBool | None = None, tempfile_suffix: str | Callable[[], str] | None = None, tempfile: str | Callable[[], str] | None = None, default: str | Document = '', accept_default: bool = False, pre_run: Callable[[], None] | None = None, set_exception_handler: bool = True, handle_sigint: bool = True, in_thread: bool = False) → _T

	Display the prompt.

The first set of arguments is a subset of the PromptSession
class itself. For these, passing in None will keep the current
values that are active in the session. Passing in a value will set the
attribute for the session, which means that it applies to the current,
but also to the next prompts.

Note that in order to erase a Completer, Validator or
AutoSuggest, you can’t use None. Instead pass in a
DummyCompleter, DummyValidator or DummyAutoSuggest instance
respectively. For a Lexer you can pass in an empty SimpleLexer.

Additional arguments, specific for this prompt:

	Parameters:

	
	default – The default input text to be shown. (This can be edited
by the user).

	accept_default – When True, automatically accept the default
value without allowing the user to edit the input.

	pre_run – Callable, called at the start of Application.run.

	in_thread – Run the prompt in a background thread; block the
current thread. This avoids interference with an event loop in the
current thread. Like Application.run(in_thread=True).

This method will raise KeyboardInterrupt when control-c has been
pressed (for abort) and EOFError when control-d has been pressed
(for exit).

	
prompt_toolkit.shortcuts.button_dialog(title: AnyFormattedText = '', text: AnyFormattedText = '', buttons: list[tuple[str, _T]] = [], style: BaseStyle | None = None) → Application[_T]

	Display a dialog with button choices (given as a list of tuples).
Return the value associated with button.

	
prompt_toolkit.shortcuts.clear() → None

	Clear the screen.

	
prompt_toolkit.shortcuts.clear_title() → None

	Erase the current title.

	
prompt_toolkit.shortcuts.confirm(message: str = 'Confirm?', suffix: str = ' (y/n) ') → bool

	Display a confirmation prompt that returns True/False.

	
prompt_toolkit.shortcuts.create_confirm_session(message: str, suffix: str = ' (y/n) ') → PromptSession[bool]

	Create a PromptSession object for the ‘confirm’ function.

	
prompt_toolkit.shortcuts.input_dialog(title: AnyFormattedText = '', text: AnyFormattedText = '', ok_text: str = 'OK', cancel_text: str = 'Cancel', completer: Completer | None = None, validator: Validator | None = None, password: FilterOrBool = False, style: BaseStyle | None = None, default: str = '') → Application[str]

	Display a text input box.
Return the given text, or None when cancelled.

	
prompt_toolkit.shortcuts.message_dialog(title: AnyFormattedText = '', text: AnyFormattedText = '', ok_text: str = 'Ok', style: BaseStyle | None = None) → Application[None]

	Display a simple message box and wait until the user presses enter.

	
prompt_toolkit.shortcuts.print_formatted_text(*values: Any, sep: str = ' ', end: str = '\n', file: TextIO | None = None, flush: bool = False, style: BaseStyle | None = None, output: Output | None = None, color_depth: ColorDepth | None = None, style_transformation: StyleTransformation | None = None, include_default_pygments_style: bool = True) → None

	print_formatted_text(*values, sep=' ', end='\n', file=None, flush=False, style=None, output=None)

Print text to stdout. This is supposed to be compatible with Python’s print
function, but supports printing of formatted text. You can pass a
FormattedText,
HTML or
ANSI object to print formatted
text.

	Print HTML as follows:

print_formatted_text(HTML('<i>Some italic text</i> <ansired>This is red!</ansired>'))

style = Style.from_dict({
 'hello': '#ff0066',
 'world': '#884444 italic',
})
print_formatted_text(HTML('<hello>Hello</hello> <world>world</world>!'), style=style)

	Print a list of (style_str, text) tuples in the given style to the
output. E.g.:

style = Style.from_dict({
 'hello': '#ff0066',
 'world': '#884444 italic',
})
fragments = FormattedText([
 ('class:hello', 'Hello'),
 ('class:world', 'World'),
])
print_formatted_text(fragments, style=style)

If you want to print a list of Pygments tokens, wrap it in
PygmentsTokens to do the
conversion.

If a prompt_toolkit Application is currently running, this will always
print above the application or prompt (similar to patch_stdout). So,
print_formatted_text will erase the current application, print the text,
and render the application again.

	Parameters:

	
	values – Any kind of printable object, or formatted string.

	sep – String inserted between values, default a space.

	end – String appended after the last value, default a newline.

	style – Style instance for the color scheme.

	include_default_pygments_style – bool. Include the default Pygments
style when set to True (the default).

	
prompt_toolkit.shortcuts.progress_dialog(title: AnyFormattedText = '', text: AnyFormattedText = '', run_callback: Callable[[Callable[[int], None], Callable[[str], None]], None] = <function <lambda>>, style: BaseStyle | None = None) → Application[None]

	
	Parameters:

	run_callback – A function that receives as input a set_percentage
function and it does the work.

	
prompt_toolkit.shortcuts.prompt(message: AnyFormattedText | None = None, *, history: History | None = None, editing_mode: EditingMode | None = None, refresh_interval: float | None = None, vi_mode: bool | None = None, lexer: Lexer | None = None, completer: Completer | None = None, complete_in_thread: bool | None = None, is_password: bool | None = None, key_bindings: KeyBindingsBase | None = None, bottom_toolbar: AnyFormattedText | None = None, style: BaseStyle | None = None, color_depth: ColorDepth | None = None, cursor: AnyCursorShapeConfig = None, include_default_pygments_style: FilterOrBool | None = None, style_transformation: StyleTransformation | None = None, swap_light_and_dark_colors: FilterOrBool | None = None, rprompt: AnyFormattedText | None = None, multiline: FilterOrBool | None = None, prompt_continuation: PromptContinuationText | None = None, wrap_lines: FilterOrBool | None = None, enable_history_search: FilterOrBool | None = None, search_ignore_case: FilterOrBool | None = None, complete_while_typing: FilterOrBool | None = None, validate_while_typing: FilterOrBool | None = None, complete_style: CompleteStyle | None = None, auto_suggest: AutoSuggest | None = None, validator: Validator | None = None, clipboard: Clipboard | None = None, mouse_support: FilterOrBool | None = None, input_processors: list[Processor] | None = None, placeholder: AnyFormattedText | None = None, reserve_space_for_menu: int | None = None, enable_system_prompt: FilterOrBool | None = None, enable_suspend: FilterOrBool | None = None, enable_open_in_editor: FilterOrBool | None = None, tempfile_suffix: str | Callable[[], str] | None = None, tempfile: str | Callable[[], str] | None = None, in_thread: bool = False, default: str = '', accept_default: bool = False, pre_run: Callable[[], None] | None = None) → str

	Display the prompt.

The first set of arguments is a subset of the PromptSession
class itself. For these, passing in None will keep the current
values that are active in the session. Passing in a value will set the
attribute for the session, which means that it applies to the current,
but also to the next prompts.

Note that in order to erase a Completer, Validator or
AutoSuggest, you can’t use None. Instead pass in a
DummyCompleter, DummyValidator or DummyAutoSuggest instance
respectively. For a Lexer you can pass in an empty SimpleLexer.

Additional arguments, specific for this prompt:

	Parameters:

	
	default – The default input text to be shown. (This can be edited
by the user).

	accept_default – When True, automatically accept the default
value without allowing the user to edit the input.

	pre_run – Callable, called at the start of Application.run.

	in_thread – Run the prompt in a background thread; block the
current thread. This avoids interference with an event loop in the
current thread. Like Application.run(in_thread=True).

This method will raise KeyboardInterrupt when control-c has been
pressed (for abort) and EOFError when control-d has been pressed
(for exit).

	
prompt_toolkit.shortcuts.radiolist_dialog(title: AnyFormattedText = '', text: AnyFormattedText = '', ok_text: str = 'Ok', cancel_text: str = 'Cancel', values: Sequence[tuple[_T, AnyFormattedText]] | None = None, default: _T | None = None, style: BaseStyle | None = None) → Application[_T]

	Display a simple list of element the user can choose amongst.

Only one element can be selected at a time using Arrow keys and Enter.
The focus can be moved between the list and the Ok/Cancel button with tab.

	
prompt_toolkit.shortcuts.set_title(text: str) → None

	Set the terminal title.

	
prompt_toolkit.shortcuts.yes_no_dialog(title: AnyFormattedText = '', text: AnyFormattedText = '', yes_text: str = 'Yes', no_text: str = 'No', style: BaseStyle | None = None) → Application[bool]

	Display a Yes/No dialog.
Return a boolean.

Formatter classes for the progress bar.
Each progress bar consists of a list of these formatters.

	
class prompt_toolkit.shortcuts.progress_bar.formatters.Bar(start: str = '[', end: str = ']', sym_a: str = '=', sym_b: str = '>', sym_c: str = ' ', unknown: str = '#')

	Display the progress bar itself.

	
class prompt_toolkit.shortcuts.progress_bar.formatters.Formatter

	Base class for any formatter.

	
class prompt_toolkit.shortcuts.progress_bar.formatters.IterationsPerSecond

	Display the iterations per second.

	
class prompt_toolkit.shortcuts.progress_bar.formatters.Label(width: None | int | Dimension | Callable[[], Any] = None, suffix: str = '')

	Display the name of the current task.

	Parameters:

	
	width – If a width is given, use this width. Scroll the text if it
doesn’t fit in this width.

	suffix – String suffix to be added after the task name, e.g. ‘: ‘.
If no task name was given, no suffix will be added.

	
class prompt_toolkit.shortcuts.progress_bar.formatters.Percentage

	Display the progress as a percentage.

	
class prompt_toolkit.shortcuts.progress_bar.formatters.Progress

	Display the progress as text. E.g. “8/20”

	
class prompt_toolkit.shortcuts.progress_bar.formatters.Rainbow(formatter: Formatter)

	For the fun. Add rainbow colors to any of the other formatters.

	
class prompt_toolkit.shortcuts.progress_bar.formatters.SpinningWheel

	Display a spinning wheel.

	
class prompt_toolkit.shortcuts.progress_bar.formatters.Text(text: AnyFormattedText, style: str = '')

	Display plain text.

	
class prompt_toolkit.shortcuts.progress_bar.formatters.TimeElapsed

	Display the elapsed time.

	
class prompt_toolkit.shortcuts.progress_bar.formatters.TimeLeft

	Display the time left.

	
prompt_toolkit.shortcuts.progress_bar.formatters.create_default_formatters() → list[prompt_toolkit.shortcuts.progress_bar.formatters.Formatter]

	Return the list of default formatters.

Validation

Input validation for a Buffer.
(Validators will be called before accepting input.)

	
class prompt_toolkit.validation.ConditionalValidator(validator: Validator, filter: Filter | bool)

	Validator that can be switched on/off according to
a filter. (This wraps around another validator.)

	
class prompt_toolkit.validation.DummyValidator

	Validator class that accepts any input.

	
class prompt_toolkit.validation.DynamicValidator(get_validator: Callable[[], Validator | None])

	Validator class that can dynamically returns any Validator.

	Parameters:

	get_validator – Callable that returns a Validator instance.

	
class prompt_toolkit.validation.ThreadedValidator(validator: Validator)

	Wrapper that runs input validation in a thread.
(Use this to prevent the user interface from becoming unresponsive if the
input validation takes too much time.)

	
async validate_async(document: Document) → None

	Run the validate function in a thread.

	
exception prompt_toolkit.validation.ValidationError(cursor_position: int = 0, message: str = '')

	Error raised by Validator.validate().

	Parameters:

	
	cursor_position – The cursor position where the error occurred.

	message – Text.

	
class prompt_toolkit.validation.Validator

	Abstract base class for an input validator.

A validator is typically created in one of the following two ways:

	Either by overriding this class and implementing the validate method.

	Or by passing a callable to Validator.from_callable.

If the validation takes some time and needs to happen in a background
thread, this can be wrapped in a ThreadedValidator.

	
classmethod from_callable(validate_func: Callable[[str], bool], error_message: str = 'Invalid input', move_cursor_to_end: bool = False) → Validator

	Create a validator from a simple validate callable. E.g.:

def is_valid(text):
 return text in ['hello', 'world']
Validator.from_callable(is_valid, error_message='Invalid input')

	Parameters:

	
	validate_func – Callable that takes the input string, and returns
True if the input is valid input.

	error_message – Message to be displayed if the input is invalid.

	move_cursor_to_end – Move the cursor to the end of the input, if
the input is invalid.

	
abstract validate(document: Document) → None

	Validate the input.
If invalid, this should raise a ValidationError.

	Parameters:

	document – Document instance.

	
async validate_async(document: Document) → None

	Return a Future which is set when the validation is ready.
This function can be overloaded in order to provide an asynchronous
implementation.

Auto suggestion

Fish-style [http://fishshell.com/] like auto-suggestion.

While a user types input in a certain buffer, suggestions are generated
(asynchronously.) Usually, they are displayed after the input. When the cursor
presses the right arrow and the cursor is at the end of the input, the
suggestion will be inserted.

If you want the auto suggestions to be asynchronous (in a background thread),
because they take too much time, and could potentially block the event loop,
then wrap the AutoSuggest instance into a
ThreadedAutoSuggest.

	
class prompt_toolkit.auto_suggest.AutoSuggest

	Base class for auto suggestion implementations.

	
abstract get_suggestion(buffer: Buffer, document: Document) → Suggestion | None

	Return None or a Suggestion instance.

We receive both Buffer and
Document. The reason is that auto
suggestions are retrieved asynchronously. (Like completions.) The
buffer text could be changed in the meantime, but document contains
the buffer document like it was at the start of the auto suggestion
call. So, from here, don’t access buffer.text, but use
document.text instead.

	Parameters:

	
	buffer – The Buffer instance.

	document – The Document instance.

	
async get_suggestion_async(buff: Buffer, document: Document) → Suggestion | None

	Return a Future which is set when the suggestions are ready.
This function can be overloaded in order to provide an asynchronous
implementation.

	
class prompt_toolkit.auto_suggest.AutoSuggestFromHistory

	Give suggestions based on the lines in the history.

	
class prompt_toolkit.auto_suggest.ConditionalAutoSuggest(auto_suggest: AutoSuggest, filter: bool | Filter)

	Auto suggest that can be turned on and of according to a certain condition.

	
class prompt_toolkit.auto_suggest.DummyAutoSuggest

	AutoSuggest class that doesn’t return any suggestion.

	
class prompt_toolkit.auto_suggest.DynamicAutoSuggest(get_auto_suggest: Callable[[], AutoSuggest | None])

	Validator class that can dynamically returns any Validator.

	Parameters:

	get_validator – Callable that returns a Validator instance.

	
class prompt_toolkit.auto_suggest.Suggestion(text: str)

	Suggestion returned by an auto-suggest algorithm.

	Parameters:

	text – The suggestion text.

	
class prompt_toolkit.auto_suggest.ThreadedAutoSuggest(auto_suggest: AutoSuggest)

	Wrapper that runs auto suggestions in a thread.
(Use this to prevent the user interface from becoming unresponsive if the
generation of suggestions takes too much time.)

	
async get_suggestion_async(buff: Buffer, document: Document) → Suggestion | None

	Run the get_suggestion function in a thread.

Renderer

Renders the command line on the console.
(Redraws parts of the input line that were changed.)

	
class prompt_toolkit.renderer.Renderer(style: BaseStyle, output: Output, full_screen: bool = False, mouse_support: Filter | bool = False, cpr_not_supported_callback: Callable[[], None] | None = None)

	Typical usage:

output = Vt100_Output.from_pty(sys.stdout)
r = Renderer(style, output)
r.render(app, layout=...)

	
clear() → None

	Clear screen and go to 0,0

	
erase(leave_alternate_screen: bool = True) → None

	Hide all output and put the cursor back at the first line. This is for
instance used for running a system command (while hiding the CLI) and
later resuming the same CLI.)

	Parameters:

	leave_alternate_screen – When True, and when inside an alternate
screen buffer, quit the alternate screen.

	
property height_is_known: bool

	True when the height from the cursor until the bottom of the terminal
is known. (It’s often nicer to draw bottom toolbars only if the height
is known, in order to avoid flickering when the CPR response arrives.)

	
property last_rendered_screen: Screen | None

	The Screen class that was generated during the last rendering.
This can be None.

	
render(app: Application[Any], layout: Layout, is_done: bool = False) → None

	Render the current interface to the output.

	Parameters:

	is_done – When True, put the cursor at the end of the interface. We
won’t print any changes to this part.

	
report_absolute_cursor_row(row: int) → None

	To be called when we know the absolute cursor position.
(As an answer of a “Cursor Position Request” response.)

	
request_absolute_cursor_position() → None

	Get current cursor position.

We do this to calculate the minimum available height that we can
consume for rendering the prompt. This is the available space below te
cursor.

For vt100: Do CPR request. (answer will arrive later.)
For win32: Do API call. (Answer comes immediately.)

	
property rows_above_layout: int

	Return the number of rows visible in the terminal above the layout.

	
async wait_for_cpr_responses(timeout: int = 1) → None

	Wait for a CPR response.

	
property waiting_for_cpr: bool

	Waiting for CPR flag. True when we send the request, but didn’t got a
response.

	
prompt_toolkit.renderer.print_formatted_text(output: Output, formatted_text: AnyFormattedText, style: BaseStyle, style_transformation: StyleTransformation | None = None, color_depth: ColorDepth | None = None) → None

	Print a list of (style_str, text) tuples in the given style to the output.

Lexers

Lexer interface and implementations.
Used for syntax highlighting.

	
class prompt_toolkit.lexers.DynamicLexer(get_lexer: Callable[[], Lexer | None])

	Lexer class that can dynamically returns any Lexer.

	Parameters:

	get_lexer – Callable that returns a Lexer instance.

	
class prompt_toolkit.lexers.Lexer

	Base class for all lexers.

	
invalidation_hash() → Hashable

	When this changes, lex_document could give a different output.
(Only used for DynamicLexer.)

	
abstract lex_document(document: Document) → Callable[[int], StyleAndTextTuples]

	Takes a Document and returns a
callable that takes a line number and returns a list of
(style_str, text) tuples for that line.

	XXX: Note that in the past, this was supposed to return a list
	of (Token, text) tuples, just like a Pygments lexer.

	
class prompt_toolkit.lexers.PygmentsLexer(pygments_lexer_cls: type[PygmentsLexerCls], sync_from_start: FilterOrBool = True, syntax_sync: SyntaxSync | None = None)

	Lexer that calls a pygments lexer.

Example:

from pygments.lexers.html import HtmlLexer
lexer = PygmentsLexer(HtmlLexer)

Note: Don’t forget to also load a Pygments compatible style. E.g.:

from prompt_toolkit.styles.from_pygments import style_from_pygments_cls
from pygments.styles import get_style_by_name
style = style_from_pygments_cls(get_style_by_name('monokai'))

	Parameters:

	
	pygments_lexer_cls – A Lexer from Pygments.

	sync_from_start – Start lexing at the start of the document. This
will always give the best results, but it will be slow for bigger
documents. (When the last part of the document is display, then the
whole document will be lexed by Pygments on every key stroke.) It is
recommended to disable this for inputs that are expected to be more
than 1,000 lines.

	syntax_sync – SyntaxSync object.

	
classmethod from_filename(filename: str, sync_from_start: Filter | bool = True) → Lexer

	Create a Lexer from a filename.

	
lex_document(document: Document) → Callable[[int], StyleAndTextTuples]

	Create a lexer function that takes a line number and returns the list
of (style_str, text) tuples as the Pygments lexer returns for that line.

	
class prompt_toolkit.lexers.RegexSync(pattern: str)

	Synchronize by starting at a line that matches the given regex pattern.

	
classmethod from_pygments_lexer_cls(lexer_cls: PygmentsLexerCls) → RegexSync

	Create a RegexSync instance for this Pygments lexer class.

	
get_sync_start_position(document: Document, lineno: int) → tuple[int, int]

	Scan backwards, and find a possible position to start.

	
class prompt_toolkit.lexers.SimpleLexer(style: str = '')

	Lexer that doesn’t do any tokenizing and returns the whole input as one
token.

	Parameters:

	style – The style string for this lexer.

	
class prompt_toolkit.lexers.SyncFromStart

	Always start the syntax highlighting from the beginning.

	
class prompt_toolkit.lexers.SyntaxSync

	Syntax synchroniser. This is a tool that finds a start position for the
lexer. This is especially important when editing big documents; we don’t
want to start the highlighting by running the lexer from the beginning of
the file. That is very slow when editing.

	
abstract get_sync_start_position(document: Document, lineno: int) → tuple[int, int]

	Return the position from where we can start lexing as a (row, column)
tuple.

	Parameters:

	
	document – Document instance that contains all the lines.

	lineno – The line that we want to highlight. (We need to return
this line, or an earlier position.)

Layout

Command line layout definitions

The layout of a command line interface is defined by a Container instance.
There are two main groups of classes here. Containers and controls:

	A container can contain other containers or controls, it can have multiple
children and it decides about the dimensions.

	A control is responsible for rendering the actual content to a screen.
A control can propose some dimensions, but it’s the container who decides
about the dimensions – or when the control consumes more space – which part
of the control will be visible.

Container classes:

- Container (Abstract base class)
 |- HSplit (Horizontal split)
 |- VSplit (Vertical split)
 |- FloatContainer (Container which can also contain menus and other floats)
 `- Window (Container which contains one actual control

Control classes:

- UIControl (Abstract base class)
 |- FormattedTextControl (Renders formatted text, or a simple list of text fragments)
 `- BufferControl (Renders an input buffer.)

Usually, you end up wrapping every control inside a Window object, because
that’s the only way to render it in a layout.

There are some prepared toolbars which are ready to use:

- SystemToolbar (Shows the 'system' input buffer, for entering system commands.)
- ArgToolbar (Shows the input 'arg', for repetition of input commands.)
- SearchToolbar (Shows the 'search' input buffer, for incremental search.)
- CompletionsToolbar (Shows the completions of the current buffer.)
- ValidationToolbar (Shows validation errors of the current buffer.)

And one prepared menu:

	CompletionsMenu

The layout class itself

	
class prompt_toolkit.layout.Layout(container: AnyContainer, focused_element: FocusableElement | None = None)

	The layout for a prompt_toolkit
Application.
This also keeps track of which user control is focused.

	Parameters:

	
	container – The “root” container for the layout.

	focused_element – element to be focused initially. (Can be anything
the focus function accepts.)

	
property buffer_has_focus: bool

	Return True if the currently focused control is a
BufferControl. (For instance, used to determine whether the
default key bindings should be active or not.)

	
property current_buffer: Buffer | None

	The currently focused Buffer or None.

	
property current_control: UIControl

	Get the UIControl to currently has the focus.

	
property current_window: Window

	Return the Window object that is currently focused.

	
find_all_windows() → Generator[Window, None, None]

	Find all the UIControl objects in this layout.

	
focus(value: FocusableElement) → None

	Focus the given UI element.

value can be either:

	a UIControl

	a Buffer instance or the name of a Buffer

	a Window

	Any container object. In this case we will focus the Window
from this container that was focused most recent, or the very first
focusable Window of the container.

	
focus_last() → None

	Give the focus to the last focused control.

	
focus_next() → None

	Focus the next visible/focusable Window.

	
focus_previous() → None

	Focus the previous visible/focusable Window.

	
get_buffer_by_name(buffer_name: str) → Buffer | None

	Look in the layout for a buffer with the given name.
Return None when nothing was found.

	
get_focusable_windows() → Iterable[Window]

	Return all the Window objects which are focusable (in the
‘modal’ area).

	
get_parent(container: Container) → Container | None

	Return the parent container for the given container, or None, if it
wasn’t found.

	
get_visible_focusable_windows() → list[prompt_toolkit.layout.containers.Window]

	Return a list of Window objects that are focusable.

	
has_focus(value: FocusableElement) → bool

	Check whether the given control has the focus.
:param value: UIControl or Window instance.

	
property is_searching: bool

	True if we are searching right now.

	
property previous_control: UIControl

	Get the UIControl to previously had the focus.

	
property search_target_buffer_control: BufferControl | None

	Return the BufferControl in which we are searching or None.

	
update_parents_relations() → None

	Update child->parent relationships mapping.

	
walk() → Iterable[Container]

	Walk through all the layout nodes (and their children) and yield them.

	
walk_through_modal_area() → Iterable[Container]

	Walk through all the containers which are in the current ‘modal’ part
of the layout.

	
class prompt_toolkit.layout.InvalidLayoutError

	

	
class prompt_toolkit.layout.walk(container: Container, skip_hidden: bool = False)

	Walk through layout, starting at this container.

Containers

	
class prompt_toolkit.layout.Container

	Base class for user interface layout.

	
abstract get_children() → list[prompt_toolkit.layout.containers.Container]

	Return the list of child Container objects.

	
get_key_bindings() → KeyBindingsBase | None

	Returns a KeyBindings object. These bindings become active when any
user control in this container has the focus, except if any containers
between this container and the focused user control is modal.

	
is_modal() → bool

	When this container is modal, key bindings from parent containers are
not taken into account if a user control in this container is focused.

	
abstract preferred_height(width: int, max_available_height: int) → Dimension

	Return a Dimension that represents the
desired height for this container.

	
abstract preferred_width(max_available_width: int) → Dimension

	Return a Dimension that represents the
desired width for this container.

	
abstract reset() → None

	Reset the state of this container and all the children.
(E.g. reset scroll offsets, etc…)

	
abstract write_to_screen(screen: Screen, mouse_handlers: MouseHandlers, write_position: WritePosition, parent_style: str, erase_bg: bool, z_index: int | None) → None

	Write the actual content to the screen.

	Parameters:

	
	screen – Screen

	mouse_handlers – MouseHandlers.

	parent_style – Style string to pass to the Window
object. This will be applied to all content of the windows.
VSplit and HSplit can use it to pass their
style down to the windows that they contain.

	z_index – Used for propagating z_index from parent to child.

	
class prompt_toolkit.layout.HSplit(children: Sequence[AnyContainer], window_too_small: Container | None = None, align: VerticalAlign = VerticalAlign.JUSTIFY, padding: AnyDimension = 0, padding_char: str | None = None, padding_style: str = '', width: AnyDimension = None, height: AnyDimension = None, z_index: int | None = None, modal: bool = False, key_bindings: KeyBindingsBase | None = None, style: str | Callable[[], str] = '')

	Several layouts, one stacked above/under the other.

+--------------------+
| |
+--------------------+
| |
+--------------------+

By default, this doesn’t display a horizontal line between the children,
but if this is something you need, then create a HSplit as follows:

HSplit(children=[...], padding_char='-',
 padding=1, padding_style='#ffff00')

	Parameters:

	
	children – List of child Container objects.

	window_too_small – A Container object that is displayed if
there is not enough space for all the children. By default, this is a
“Window too small” message.

	align – VerticalAlign value.

	width – When given, use this width instead of looking at the children.

	height – When given, use this height instead of looking at the children.

	z_index – (int or None) When specified, this can be used to bring
element in front of floating elements. None means: inherit from parent.

	style – A style string.

	modal – True or False.

	key_bindings – None or a KeyBindings object.

	padding – (Dimension or int), size to be used for the padding.

	padding_char – Character to be used for filling in the padding.

	padding_style – Style to applied to the padding.

	
write_to_screen(screen: Screen, mouse_handlers: MouseHandlers, write_position: WritePosition, parent_style: str, erase_bg: bool, z_index: int | None) → None

	Render the prompt to a Screen instance.

	Parameters:

	screen – The Screen class
to which the output has to be written.

	
class prompt_toolkit.layout.VSplit(children: Sequence[AnyContainer], window_too_small: Container | None = None, align: HorizontalAlign = HorizontalAlign.JUSTIFY, padding: AnyDimension = 0, padding_char: str | None = None, padding_style: str = '', width: AnyDimension = None, height: AnyDimension = None, z_index: int | None = None, modal: bool = False, key_bindings: KeyBindingsBase | None = None, style: str | Callable[[], str] = '')

	Several layouts, one stacked left/right of the other.

+---------+----------+
| | |
| | |
+---------+----------+

By default, this doesn’t display a vertical line between the children, but
if this is something you need, then create a HSplit as follows:

VSplit(children=[...], padding_char='|',
 padding=1, padding_style='#ffff00')

	Parameters:

	
	children – List of child Container objects.

	window_too_small – A Container object that is displayed if
there is not enough space for all the children. By default, this is a
“Window too small” message.

	align – HorizontalAlign value.

	width – When given, use this width instead of looking at the children.

	height – When given, use this height instead of looking at the children.

	z_index – (int or None) When specified, this can be used to bring
element in front of floating elements. None means: inherit from parent.

	style – A style string.

	modal – True or False.

	key_bindings – None or a KeyBindings object.

	padding – (Dimension or int), size to be used for the padding.

	padding_char – Character to be used for filling in the padding.

	padding_style – Style to applied to the padding.

	
write_to_screen(screen: Screen, mouse_handlers: MouseHandlers, write_position: WritePosition, parent_style: str, erase_bg: bool, z_index: int | None) → None

	Render the prompt to a Screen instance.

	Parameters:

	screen – The Screen class
to which the output has to be written.

	
class prompt_toolkit.layout.FloatContainer(content: AnyContainer, floats: list[Float], modal: bool = False, key_bindings: KeyBindingsBase | None = None, style: str | Callable[[], str] = '', z_index: int | None = None)

	Container which can contain another container for the background, as well
as a list of floating containers on top of it.

Example Usage:

FloatContainer(content=Window(...),
 floats=[
 Float(xcursor=True,
 ycursor=True,
 content=CompletionsMenu(...))
])

	Parameters:

	z_index – (int or None) When specified, this can be used to bring
element in front of floating elements. None means: inherit from parent.
This is the z_index for the whole Float container as a whole.

	
preferred_height(width: int, max_available_height: int) → Dimension

	Return the preferred height of the float container.
(We don’t care about the height of the floats, they should always fit
into the dimensions provided by the container.)

	
class prompt_toolkit.layout.Float(content: AnyContainer, top: int | None = None, right: int | None = None, bottom: int | None = None, left: int | None = None, width: int | Callable[[], int] | None = None, height: int | Callable[[], int] | None = None, xcursor: bool = False, ycursor: bool = False, attach_to_window: AnyContainer | None = None, hide_when_covering_content: bool = False, allow_cover_cursor: bool = False, z_index: int = 1, transparent: bool = False)

	Float for use in a FloatContainer.
Except for the content parameter, all other options are optional.

	Parameters:

	
	content – Container instance.

	width – Dimension or callable which returns a Dimension.

	height – Dimension or callable which returns a Dimension.

	left – Distance to the left edge of the FloatContainer.

	right – Distance to the right edge of the FloatContainer.

	top – Distance to the top of the FloatContainer.

	bottom – Distance to the bottom of the FloatContainer.

	attach_to_window – Attach to the cursor from this window, instead of
the current window.

	hide_when_covering_content – Hide the float when it covers content underneath.

	allow_cover_cursor – When False, make sure to display the float
below the cursor. Not on top of the indicated position.

	z_index – Z-index position. For a Float, this needs to be at least
one. It is relative to the z_index of the parent container.

	transparent – Filter indicating whether this float needs to be
drawn transparently.

	
class prompt_toolkit.layout.Window(content: UIControl | None = None, width: AnyDimension = None, height: AnyDimension = None, z_index: int | None = None, dont_extend_width: FilterOrBool = False, dont_extend_height: FilterOrBool = False, ignore_content_width: FilterOrBool = False, ignore_content_height: FilterOrBool = False, left_margins: Sequence[Margin] | None = None, right_margins: Sequence[Margin] | None = None, scroll_offsets: ScrollOffsets | None = None, allow_scroll_beyond_bottom: FilterOrBool = False, wrap_lines: FilterOrBool = False, get_vertical_scroll: Callable[[Window], int] | None = None, get_horizontal_scroll: Callable[[Window], int] | None = None, always_hide_cursor: FilterOrBool = False, cursorline: FilterOrBool = False, cursorcolumn: FilterOrBool = False, colorcolumns: None | list[ColorColumn] | Callable[[], list[ColorColumn]] = None, align: WindowAlign | Callable[[], WindowAlign] = WindowAlign.LEFT, style: str | Callable[[], str] = '', char: None | str | Callable[[], str] = None, get_line_prefix: GetLinePrefixCallable | None = None)

	Container that holds a control.

	Parameters:

	
	content – UIControl instance.

	width – Dimension instance or callable.

	height – Dimension instance or callable.

	z_index – When specified, this can be used to bring element in front
of floating elements.

	dont_extend_width – When True, don’t take up more width then the
preferred width reported by the control.

	dont_extend_height – When True, don’t take up more width then the
preferred height reported by the control.

	ignore_content_width – A bool or Filter instance. Ignore
the UIContent width when calculating the dimensions.

	ignore_content_height – A bool or Filter instance. Ignore
the UIContent height when calculating the dimensions.

	left_margins – A list of Margin instance to be displayed on
the left. For instance: NumberedMargin
can be one of them in order to show line numbers.

	right_margins – Like left_margins, but on the other side.

	scroll_offsets – ScrollOffsets instance, representing the
preferred amount of lines/columns to be always visible before/after the
cursor. When both top and bottom are a very high number, the cursor
will be centered vertically most of the time.

	allow_scroll_beyond_bottom – A bool or
Filter instance. When True, allow scrolling so far, that the
top part of the content is not visible anymore, while there is still
empty space available at the bottom of the window. In the Vi editor for
instance, this is possible. You will see tildes while the top part of
the body is hidden.

	wrap_lines – A bool or Filter instance. When True, don’t
scroll horizontally, but wrap lines instead.

	get_vertical_scroll – Callable that takes this window
instance as input and returns a preferred vertical scroll.
(When this is None, the scroll is only determined by the last and
current cursor position.)

	get_horizontal_scroll – Callable that takes this window
instance as input and returns a preferred vertical scroll.

	always_hide_cursor – A bool or
Filter instance. When True, never display the cursor, even
when the user control specifies a cursor position.

	cursorline – A bool or Filter instance. When True,
display a cursorline.

	cursorcolumn – A bool or Filter instance. When True,
display a cursorcolumn.

	colorcolumns – A list of ColorColumn instances that
describe the columns to be highlighted, or a callable that returns such
a list.

	align – WindowAlign value or callable that returns an
WindowAlign value. alignment of content.

	style – A style string. Style to be applied to all the cells in this
window. (This can be a callable that returns a string.)

	char – (string) Character to be used for filling the background. This
can also be a callable that returns a character.

	get_line_prefix – None or a callable that returns formatted text to
be inserted before a line. It takes a line number (int) and a
wrap_count and returns formatted text. This can be used for
implementation of line continuations, things like Vim “breakindent” and
so on.

	
preferred_height(width: int, max_available_height: int) → Dimension

	Calculate the preferred height for this window.

	
preferred_width(max_available_width: int) → Dimension

	Calculate the preferred width for this window.

	
write_to_screen(screen: Screen, mouse_handlers: MouseHandlers, write_position: WritePosition, parent_style: str, erase_bg: bool, z_index: int | None) → None

	Write window to screen. This renders the user control, the margins and
copies everything over to the absolute position at the given screen.

	
class prompt_toolkit.layout.WindowAlign(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Alignment of the Window content.

Note that this is different from HorizontalAlign and VerticalAlign,
which are used for the alignment of the child containers in respectively
VSplit and HSplit.

	
class prompt_toolkit.layout.ConditionalContainer(content: AnyContainer, filter: FilterOrBool)

	Wrapper around any other container that can change the visibility. The
received filter determines whether the given container should be
displayed or not.

	Parameters:

	
	content – Container instance.

	filter – Filter instance.

	
class prompt_toolkit.layout.DynamicContainer(get_container: Callable[[], AnyContainer])

	Container class that dynamically returns any Container.

	Parameters:

	get_container – Callable that returns a Container instance
or any widget with a __pt_container__ method.

	
class prompt_toolkit.layout.ScrollablePane(content: Container, scroll_offsets: ScrollOffsets | None = None, keep_cursor_visible: Filter | bool = True, keep_focused_window_visible: Filter | bool = True, max_available_height: int = 10000, width: None | int | Dimension | Callable[[], Any] = None, height: None | int | Dimension | Callable[[], Any] = None, show_scrollbar: Filter | bool = True, display_arrows: Filter | bool = True, up_arrow_symbol: str = '^', down_arrow_symbol: str = 'v')

	Container widget that exposes a larger virtual screen to its content and
displays it in a vertical scrollbale region.

Typically this is wrapped in a large HSplit container. Make sure in that
case to not specify a height dimension of the HSplit, so that it will
scale according to the content.

Note

If you want to display a completion menu for widgets in this
ScrollablePane, then it’s still a good practice to use a
FloatContainer with a CompletionsMenu in a Float at the top-level
of the layout hierarchy, rather then nesting a FloatContainer in this
ScrollablePane. (Otherwise, it’s possible that the completion menu
is clipped.)

	Parameters:

	
	content – The content container.

	scrolloffset – Try to keep the cursor within this distance from the
top/bottom (left/right offset is not used).

	keep_cursor_visible – When True, automatically scroll the pane so
that the cursor (of the focused window) is always visible.

	keep_focused_window_visible – When True, automatically scroll the
pane so that the focused window is visible, or as much visible as
possible if it doesn’t completely fit the screen.

	max_available_height – Always constraint the height to this amount
for performance reasons.

	width – When given, use this width instead of looking at the children.

	height – When given, use this height instead of looking at the children.

	show_scrollbar – When True display a scrollbar on the right.

	
write_to_screen(screen: Screen, mouse_handlers: MouseHandlers, write_position: WritePosition, parent_style: str, erase_bg: bool, z_index: int | None) → None

	Render scrollable pane content.

This works by rendering on an off-screen canvas, and copying over the
visible region.

	
class prompt_toolkit.layout.ScrollOffsets(top: int | Callable[[], int] = 0, bottom: int | Callable[[], int] = 0, left: int | Callable[[], int] = 0, right: int | Callable[[], int] = 0)

	Scroll offsets for the Window class.

Note that left/right offsets only make sense if line wrapping is disabled.

	
class prompt_toolkit.layout.ColorColumn(position: int, style: str = 'class:color-column')

	Column for a Window to be colored.

	
class prompt_toolkit.layout.to_container(container: AnyContainer)

	Make sure that the given object is a Container.

	
class prompt_toolkit.layout.to_window(container: AnyContainer)

	Make sure that the given argument is a Window.

	
class prompt_toolkit.layout.is_container(value: object)

	Checks whether the given value is a container object
(for use in assert statements).

	
class prompt_toolkit.layout.HorizontalAlign(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Alignment for VSplit.

	
class prompt_toolkit.layout.VerticalAlign(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Alignment for HSplit.

Controls

	
class prompt_toolkit.layout.BufferControl(buffer: Buffer | None = None, input_processors: list[Processor] | None = None, include_default_input_processors: bool = True, lexer: Lexer | None = None, preview_search: FilterOrBool = False, focusable: FilterOrBool = True, search_buffer_control: None | SearchBufferControl | Callable[[], SearchBufferControl] = None, menu_position: Callable[[], int | None] | None = None, focus_on_click: FilterOrBool = False, key_bindings: KeyBindingsBase | None = None)

	Control for visualising the content of a Buffer.

	Parameters:

	
	buffer – The Buffer object to be displayed.

	input_processors – A list of
Processor objects.

	include_default_input_processors – When True, include the default
processors for highlighting of selection, search and displaying of
multiple cursors.

	lexer – Lexer instance for syntax highlighting.

	preview_search – bool or Filter: Show search while
typing. When this is True, probably you want to add a
HighlightIncrementalSearchProcessor as well. Otherwise only the
cursor position will move, but the text won’t be highlighted.

	focusable – bool or Filter: Tell whether this control is focusable.

	focus_on_click – Focus this buffer when it’s click, but not yet focused.

	key_bindings – a KeyBindings object.

	
create_content(width: int, height: int, preview_search: bool = False) → UIContent

	Create a UIContent.

	
get_invalidate_events() → Iterable[Event[object]]

	Return the Window invalidate events.

	
get_key_bindings() → KeyBindingsBase | None

	When additional key bindings are given. Return these.

	
mouse_handler(mouse_event: MouseEvent) → NotImplementedOrNone

	Mouse handler for this control.

	
preferred_width(max_available_width: int) → int | None

	This should return the preferred width.

	Note: We don’t specify a preferred width according to the content,
	because it would be too expensive. Calculating the preferred
width can be done by calculating the longest line, but this would
require applying all the processors to each line. This is
unfeasible for a larger document, and doing it for small
documents only would result in inconsistent behaviour.

	
property search_state: SearchState

	Return the SearchState for searching this BufferControl. This is
always associated with the search control. If one search bar is used
for searching multiple BufferControls, then they share the same
SearchState.

	
class prompt_toolkit.layout.SearchBufferControl(buffer: Buffer | None = None, input_processors: list[Processor] | None = None, lexer: Lexer | None = None, focus_on_click: FilterOrBool = False, key_bindings: KeyBindingsBase | None = None, ignore_case: FilterOrBool = False)

	BufferControl which is used for searching another
BufferControl.

	Parameters:

	ignore_case – Search case insensitive.

	
class prompt_toolkit.layout.DummyControl

	A dummy control object that doesn’t paint any content.

Useful for filling a Window. (The
fragment and char attributes of the Window class can be used to
define the filling.)

	
class prompt_toolkit.layout.FormattedTextControl(text: AnyFormattedText = '', style: str = '', focusable: FilterOrBool = False, key_bindings: KeyBindingsBase | None = None, show_cursor: bool = True, modal: bool = False, get_cursor_position: Callable[[], Point | None] | None = None)

	Control that displays formatted text. This can be either plain text, an
HTML object an
ANSI object, a list of (style_str,
text) tuples or a callable that takes no argument and returns one of
those, depending on how you prefer to do the formatting. See
prompt_toolkit.layout.formatted_text for more information.

(It’s mostly optimized for rather small widgets, like toolbars, menus, etc…)

When this UI control has the focus, the cursor will be shown in the upper
left corner of this control by default. There are two ways for specifying
the cursor position:

	Pass a get_cursor_position function which returns a Point instance
with the current cursor position.

	If the (formatted) text is passed as a list of (style, text) tuples
and there is one that looks like ('[SetCursorPosition]', ''), then
this will specify the cursor position.

Mouse support:

The list of fragments can also contain tuples of three items, looking like:
(style_str, text, handler). When mouse support is enabled and the user
clicks on this fragment, then the given handler is called. That handler
should accept two inputs: (Application, MouseEvent) and it should
either handle the event or return NotImplemented in case we want the
containing Window to handle this event.

	Parameters:

	
	focusable – bool or Filter: Tell whether this control is
focusable.

	text – Text or formatted text to be displayed.

	style – Style string applied to the content. (If you want to style
the whole Window, pass the style to the
Window instead.)

	key_bindings – a KeyBindings object.

	get_cursor_position – A callable that returns the cursor position as
a Point instance.

	
mouse_handler(mouse_event: MouseEvent) → NotImplementedOrNone

	Handle mouse events.

(When the fragment list contained mouse handlers and the user clicked on
on any of these, the matching handler is called. This handler can still
return NotImplemented in case we want the
Window to handle this particular
event.)

	
preferred_height(width: int, max_available_height: int, wrap_lines: bool, get_line_prefix: GetLinePrefixCallable | None) → int | None

	Return the preferred height for this control.

	
preferred_width(max_available_width: int) → int

	Return the preferred width for this control.
That is the width of the longest line.

	
class prompt_toolkit.layout.UIControl

	Base class for all user interface controls.

	
abstract create_content(width: int, height: int) → UIContent

	Generate the content for this user control.

Returns a UIContent instance.

	
get_invalidate_events() → Iterable[Event[object]]

	Return a list of Event objects. This can be a generator.
(The application collects all these events, in order to bind redraw
handlers to these events.)

	
get_key_bindings() → KeyBindingsBase | None

	The key bindings that are specific for this user control.

Return a KeyBindings object if some key bindings are
specified, or None otherwise.

	
is_focusable() → bool

	Tell whether this user control is focusable.

	
mouse_handler(mouse_event: MouseEvent) → NotImplementedOrNone

	Handle mouse events.

When NotImplemented is returned, it means that the given event is not
handled by the UIControl itself. The Window or key bindings can
decide to handle this event as scrolling or changing focus.

	Parameters:

	mouse_event – MouseEvent instance.

	
move_cursor_down() → None

	Request to move the cursor down.
This happens when scrolling down and the cursor is completely at the
top.

	
move_cursor_up() → None

	Request to move the cursor up.

	
class prompt_toolkit.layout.UIContent(get_line: Callable[[int], StyleAndTextTuples] = <function UIContent.<lambda>>, line_count: int = 0, cursor_position: Point | None = None, menu_position: Point | None = None, show_cursor: bool = True)

	Content generated by a user control. This content consists of a list of
lines.

	Parameters:

	
	get_line – Callable that takes a line number and returns the current
line. This is a list of (style_str, text) tuples.

	line_count – The number of lines.

	cursor_position – a Point for the cursor position.

	menu_position – a Point for the menu position.

	show_cursor – Make the cursor visible.

	
get_height_for_line(lineno: int, width: int, get_line_prefix: GetLinePrefixCallable | None, slice_stop: int | None = None) → int

	Return the height that a given line would need if it is rendered in a
space with the given width (using line wrapping).

	Parameters:

	
	get_line_prefix – None or a Window.get_line_prefix callable
that returns the prefix to be inserted before this line.

	slice_stop – Wrap only “line[:slice_stop]” and return that
partial result. This is needed for scrolling the window correctly
when line wrapping.

	Returns:

	The computed height.

Other

Sizing

	
class prompt_toolkit.layout.Dimension(min: int | None = None, max: int | None = None, weight: int | None = None, preferred: int | None = None)

	Specified dimension (width/height) of a user control or window.

The layout engine tries to honor the preferred size. If that is not
possible, because the terminal is larger or smaller, it tries to keep in
between min and max.

	Parameters:

	
	min – Minimum size.

	max – Maximum size.

	weight – For a VSplit/HSplit, the actual size will be determined
by taking the proportion of weights from all the children.
E.g. When there are two children, one with a weight of 1,
and the other with a weight of 2, the second will always be
twice as big as the first, if the min/max values allow it.

	preferred – Preferred size.

	
classmethod exact(amount: int) → Dimension

	Return a Dimension with an exact size. (min, max and
preferred set to amount).

	
is_zero() → bool

	True if this Dimension represents a zero size.

	
classmethod zero() → Dimension

	Create a dimension that represents a zero size. (Used for ‘invisible’
controls.)

Margins

	
class prompt_toolkit.layout.Margin

	Base interface for a margin.

	
abstract create_margin(window_render_info: WindowRenderInfo, width: int, height: int) → StyleAndTextTuples

	Creates a margin.
This should return a list of (style_str, text) tuples.

	Parameters:

	
	window_render_info – WindowRenderInfo
instance, generated after rendering and copying the visible part of
the UIControl into the
Window.

	width – The width that’s available for this margin. (As reported
by get_width().)

	height – The height that’s available for this margin. (The height
of the Window.)

	
abstract get_width(get_ui_content: Callable[[], UIContent]) → int

	Return the width that this margin is going to consume.

	Parameters:

	get_ui_content – Callable that asks the user control to create
a UIContent instance. This can be used for instance to
obtain the number of lines.

	
class prompt_toolkit.layout.NumberedMargin(relative: Filter | bool = False, display_tildes: Filter | bool = False)

	Margin that displays the line numbers.

	Parameters:

	
	relative – Number relative to the cursor position. Similar to the Vi
‘relativenumber’ option.

	display_tildes – Display tildes after the end of the document, just
like Vi does.

	
class prompt_toolkit.layout.ScrollbarMargin(display_arrows: Filter | bool = False, up_arrow_symbol: str = '^', down_arrow_symbol: str = 'v')

	Margin displaying a scrollbar.

	Parameters:

	display_arrows – Display scroll up/down arrows.

	
class prompt_toolkit.layout.ConditionalMargin(margin: Margin, filter: Filter | bool)

	Wrapper around other Margin classes to show/hide them.

	
class prompt_toolkit.layout.PromptMargin(get_prompt: Callable[[], StyleAndTextTuples], get_continuation: None | Callable[[int, int, bool], StyleAndTextTuples] = None)

	[Deprecated]

Create margin that displays a prompt.
This can display one prompt at the first line, and a continuation prompt
(e.g, just dots) on all the following lines.

This PromptMargin implementation has been largely superseded in favor of
the get_line_prefix attribute of Window. The reason is that a margin is
always a fixed width, while get_line_prefix can return a variable width
prefix in front of every line, making it more powerful, especially for line
continuations.

	Parameters:

	
	get_prompt – Callable returns formatted text or a list of
(style_str, type) tuples to be shown as the prompt at the first line.

	get_continuation – Callable that takes three inputs. The width (int),
line_number (int), and is_soft_wrap (bool). It should return formatted
text or a list of (style_str, type) tuples for the next lines of the
input.

	
get_width(get_ui_content: Callable[[], UIContent]) → int

	Width to report to the Window.

Completion Menus

	
class prompt_toolkit.layout.CompletionsMenu(max_height: int | None = None, scroll_offset: int | Callable[[], int] = 0, extra_filter: Filter | bool = True, display_arrows: Filter | bool = False, z_index: int = 100000000)

	

	
class prompt_toolkit.layout.MultiColumnCompletionsMenu(min_rows: int = 3, suggested_max_column_width: int = 30, show_meta: Filter | bool = True, extra_filter: Filter | bool = True, z_index: int = 100000000)

	Container that displays the completions in several columns.
When show_meta (a Filter) evaluates
to True, it shows the meta information at the bottom.

Processors

Processors are little transformation blocks that transform the fragments list
from a buffer before the BufferControl will render it to the screen.

They can insert fragments before or after, or highlight fragments by replacing the
fragment types.

	
class prompt_toolkit.layout.processors.AfterInput(text: AnyFormattedText, style: str = '')

	Insert text after the input.

	Parameters:

	
	text – This can be either plain text or formatted text
(or a callable that returns any of those).

	style – style to be applied to this prompt/prefix.

	
class prompt_toolkit.layout.processors.AppendAutoSuggestion(style: str = 'class:auto-suggestion')

	Append the auto suggestion to the input.
(The user can then press the right arrow the insert the suggestion.)

	
class prompt_toolkit.layout.processors.BeforeInput(text: AnyFormattedText, style: str = '')

	Insert text before the input.

	Parameters:

	
	text – This can be either plain text or formatted text
(or a callable that returns any of those).

	style – style to be applied to this prompt/prefix.

	
class prompt_toolkit.layout.processors.ConditionalProcessor(processor: Processor, filter: Filter | bool)

	Processor that applies another processor, according to a certain condition.
Example:

Create a function that returns whether or not the processor should
currently be applied.
def highlight_enabled():
 return true_or_false

Wrapped it in a `ConditionalProcessor` for usage in a `BufferControl`.
BufferControl(input_processors=[
 ConditionalProcessor(HighlightSearchProcessor(),
 Condition(highlight_enabled))])

	Parameters:

	
	processor – Processor instance.

	filter – Filter instance.

	
class prompt_toolkit.layout.processors.DisplayMultipleCursors

	When we’re in Vi block insert mode, display all the cursors.

	
class prompt_toolkit.layout.processors.DummyProcessor

	A Processor that doesn’t do anything.

	
class prompt_toolkit.layout.processors.DynamicProcessor(get_processor: Callable[[], Processor | None])

	Processor class that dynamically returns any Processor.

	Parameters:

	get_processor – Callable that returns a Processor instance.

	
class prompt_toolkit.layout.processors.HighlightIncrementalSearchProcessor

	Highlight the search terms that are used for highlighting the incremental
search. The style class ‘incsearch’ will be applied to the content.

Important: this requires the preview_search=True flag to be set for the
BufferControl. Otherwise, the cursor position won’t be set to the search
match while searching, and nothing happens.

	
class prompt_toolkit.layout.processors.HighlightMatchingBracketProcessor(chars: str = '[](){}<>', max_cursor_distance: int = 1000)

	When the cursor is on or right after a bracket, it highlights the matching
bracket.

	Parameters:

	max_cursor_distance – Only highlight matching brackets when the
cursor is within this distance. (From inside a Processor, we can’t
know which lines will be visible on the screen. But we also don’t want
to scan the whole document for matching brackets on each key press, so
we limit to this value.)

	
class prompt_toolkit.layout.processors.HighlightSearchProcessor

	Processor that highlights search matches in the document.
Note that this doesn’t support multiline search matches yet.

The style classes ‘search’ and ‘search.current’ will be applied to the
content.

	
class prompt_toolkit.layout.processors.HighlightSelectionProcessor

	Processor that highlights the selection in the document.

	
class prompt_toolkit.layout.processors.PasswordProcessor(char: str = '*')

	Processor that masks the input. (For passwords.)

	Parameters:

	char – (string) Character to be used. “*” by default.

	
class prompt_toolkit.layout.processors.Processor

	Manipulate the fragments for a given line in a
BufferControl.

	
abstract apply_transformation(transformation_input: TransformationInput) → Transformation

	Apply transformation. Returns a Transformation instance.

	Parameters:

	transformation_input – TransformationInput object.

	
class prompt_toolkit.layout.processors.ReverseSearchProcessor

	Process to display the “(reverse-i-search)`…`:…” stuff around
the search buffer.

Note: This processor is meant to be applied to the BufferControl that
contains the search buffer, it’s not meant for the original input.

	
class prompt_toolkit.layout.processors.ShowArg

	Display the ‘arg’ in front of the input.

This was used by the PromptSession, but now it uses the
Window.get_line_prefix function instead.

	
class prompt_toolkit.layout.processors.ShowLeadingWhiteSpaceProcessor(get_char: Callable[[], str] | None = None, style: str = 'class:leading-whitespace')

	Make leading whitespace visible.

	Parameters:

	get_char – Callable that returns one character.

	
class prompt_toolkit.layout.processors.ShowTrailingWhiteSpaceProcessor(get_char: Callable[[], str] | None = None, style: str = 'class:training-whitespace')

	Make trailing whitespace visible.

	Parameters:

	get_char – Callable that returns one character.

	
class prompt_toolkit.layout.processors.TabsProcessor(tabstop: int | Callable[[], int] = 4, char1: str | Callable[[], str] = '|', char2: str | Callable[[], str] = '┈', style: str = 'class:tab')

	Render tabs as spaces (instead of ^I) or make them visible (for instance,
by replacing them with dots.)

	Parameters:

	
	tabstop – Horizontal space taken by a tab. (int or callable that
returns an int).

	char1 – Character or callable that returns a character (text of
length one). This one is used for the first space taken by the tab.

	char2 – Like char1, but for the rest of the space.

	
class prompt_toolkit.layout.processors.Transformation(fragments: StyleAndTextTuples, source_to_display: SourceToDisplay | None = None, display_to_source: DisplayToSource | None = None)

	Transformation result, as returned by Processor.apply_transformation().

	Important: Always make sure that the length of document.text is equal to
	the length of all the text in fragments!

	Parameters:

	
	fragments – The transformed fragments. To be displayed, or to pass to
the next processor.

	source_to_display – Cursor position transformation from original
string to transformed string.

	display_to_source – Cursor position transformed from source string to
original string.

	
class prompt_toolkit.layout.processors.TransformationInput(buffer_control: BufferControl, document: Document, lineno: int, source_to_display: SourceToDisplay, fragments: StyleAndTextTuples, width: int, height: int)

	
	Parameters:

	
	buffer_control – BufferControl instance.

	lineno – The number of the line to which we apply the processor.

	source_to_display – A function that returns the position in the
fragments for any position in the source string. (This takes
previous processors into account.)

	fragments – List of fragments that we can transform. (Received from the
previous processor.)

	
prompt_toolkit.layout.processors.merge_processors(processors: list[prompt_toolkit.layout.processors.Processor]) → Processor

	Merge multiple Processor objects into one.

Utils

	
prompt_toolkit.layout.utils.explode_text_fragments(fragments: Iterable[_T]) → _ExplodedList[_T]

	Turn a list of (style_str, text) tuples into another list where each string is
exactly one character.

It should be fine to call this function several times. Calling this on a
list that is already exploded, is a null operation.

	Parameters:

	fragments – List of (style, text) tuples.

Screen

	
class prompt_toolkit.layout.screen.Char(char: str = ' ', style: str = '')

	Represent a single character in a Screen.

This should be considered immutable.

	Parameters:

	
	char – A single character (can be a double-width character).

	style – A style string. (Can contain classnames.)

	
class prompt_toolkit.layout.screen.Screen(default_char: Char | None = None, initial_width: int = 0, initial_height: int = 0)

	Two dimensional buffer of Char instances.

	
append_style_to_content(style_str: str) → None

	For all the characters in the screen.
Set the style string to the given style_str.

	
cursor_positions: dict[Window, Point]

	Position of the cursor.

	
draw_all_floats() → None

	Draw all float functions in order of z-index.

	
draw_with_z_index(z_index: int, draw_func: Callable[[], None]) → None

	Add a draw-function for a Window which has a >= 0 z_index.
This will be postponed until draw_all_floats is called.

	
fill_area(write_position: WritePosition, style: str = '', after: bool = False) → None

	Fill the content of this area, using the given style.
The style is prepended before whatever was here before.

	
get_cursor_position(window: Window) → Point

	Get the cursor position for a given window.
Returns a Point.

	
get_menu_position(window: Window) → Point

	Get the menu position for a given window.
(This falls back to the cursor position if no menu position was set.)

	
menu_positions: dict[Window, Point]

	(Optional) Where to position the menu. E.g. at the start of a completion.
(We can’t use the cursor position, because we don’t want the
completion menu to change its position when we browse through all the
completions.)

	
set_cursor_position(window: Window, position: Point) → None

	Set the cursor position for a given window.

	
set_menu_position(window: Window, position: Point) → None

	Set the cursor position for a given window.

	
show_cursor

	Visibility of the cursor.

	
width

	Currently used width/height of the screen. This will increase when
data is written to the screen.

	
zero_width_escapes: defaultdict[int, defaultdict[int, str]]

	Escape sequences to be injected.

Widgets

Collection of reusable components for building full screen applications.
These are higher level abstractions on top of the prompt_toolkit.layout
module.

Most of these widgets implement the __pt_container__ method, which makes it
possible to embed these in the layout like any other container.

	
class prompt_toolkit.widgets.Box(body: AnyContainer, padding: AnyDimension = None, padding_left: AnyDimension = None, padding_right: AnyDimension = None, padding_top: AnyDimension = None, padding_bottom: AnyDimension = None, width: AnyDimension = None, height: AnyDimension = None, style: str = '', char: None | str | Callable[[], str] = None, modal: bool = False, key_bindings: KeyBindings | None = None)

	Add padding around a container.

This also makes sure that the parent can provide more space than required by
the child. This is very useful when wrapping a small element with a fixed
size into a VSplit or HSplit object. The HSplit and VSplit
try to make sure to adapt respectively the width and height, possibly
shrinking other elements. Wrapping something in a Box makes it flexible.

	Parameters:

	
	body – Another container object.

	padding – The margin to be used around the body. This can be
overridden by padding_left, padding_right`, padding_top and
padding_bottom.

	style – A style string.

	char – Character to be used for filling the space around the body.
(This is supposed to be a character with a terminal width of 1.)

	
class prompt_toolkit.widgets.Button(text: str, handler: Callable[[], None] | None = None, width: int = 12, left_symbol: str = '<', right_symbol: str = '>')

	Clickable button.

	Parameters:

	
	text – The caption for the button.

	handler – None or callable. Called when the button is clicked. No
parameters are passed to this callable. Use for instance Python’s
functools.partial to pass parameters to this callable if needed.

	width – Width of the button.

	
class prompt_toolkit.widgets.Checkbox(text: AnyFormattedText = '', checked: bool = False)

	Backward compatibility util: creates a 1-sized CheckboxList

	Parameters:

	text – the text

	
class prompt_toolkit.widgets.Frame(body: AnyContainer, title: AnyFormattedText = '', style: str = '', width: AnyDimension = None, height: AnyDimension = None, key_bindings: KeyBindings | None = None, modal: bool = False)

	Draw a border around any container, optionally with a title text.

Changing the title and body of the frame is possible at runtime by
assigning to the body and title attributes of this class.

	Parameters:

	
	body – Another container object.

	title – Text to be displayed in the top of the frame (can be formatted text).

	style – Style string to be applied to this widget.

	
class prompt_toolkit.widgets.HorizontalLine

	A simple horizontal line with a height of 1.

	
class prompt_toolkit.widgets.Label(text: AnyFormattedText, style: str = '', width: AnyDimension = None, dont_extend_height: bool = True, dont_extend_width: bool = False, align: WindowAlign | Callable[[], WindowAlign] = WindowAlign.LEFT, wrap_lines: FilterOrBool = True)

	Widget that displays the given text. It is not editable or focusable.

	Parameters:

	
	text – Text to display. Can be multiline. All value types accepted by
prompt_toolkit.layout.FormattedTextControl are allowed,
including a callable.

	style – A style string.

	width – When given, use this width, rather than calculating it from
the text size.

	dont_extend_width – When True, don’t take up more width than
preferred, i.e. the length of the longest line of
the text, or value of width parameter, if
given. True by default

	dont_extend_height – When True, don’t take up more width than the
preferred height, i.e. the number of lines of
the text. False by default.

	
class prompt_toolkit.widgets.MenuContainer(body: AnyContainer, menu_items: list[MenuItem], floats: list[Float] | None = None, key_bindings: KeyBindingsBase | None = None)

	
	Parameters:

	
	floats – List of extra Float objects to display.

	menu_items – List of MenuItem objects.

	
class prompt_toolkit.widgets.RadioList(values: Sequence[tuple[_T, AnyFormattedText]], default: _T | None = None)

	List of radio buttons. Only one can be checked at the same time.

	Parameters:

	values – List of (value, label) tuples.

	
class prompt_toolkit.widgets.SearchToolbar(search_buffer: Buffer | None = None, vi_mode: bool = False, text_if_not_searching: AnyFormattedText = '', forward_search_prompt: AnyFormattedText = 'I-search: ', backward_search_prompt: AnyFormattedText = 'I-search backward: ', ignore_case: FilterOrBool = False)

	
	Parameters:

	
	vi_mode – Display ‘/’ and ‘?’ instead of I-search.

	ignore_case – Search case insensitive.

	
class prompt_toolkit.widgets.Shadow(body: AnyContainer)

	Draw a shadow underneath/behind this container.
(This applies class:shadow the the cells under the shadow. The Style
should define the colors for the shadow.)

	Parameters:

	body – Another container object.

	
class prompt_toolkit.widgets.SystemToolbar(prompt: AnyFormattedText = 'Shell command: ', enable_global_bindings: FilterOrBool = True)

	Toolbar for a system prompt.

	Parameters:

	prompt – Prompt to be displayed to the user.

	
class prompt_toolkit.widgets.TextArea(text: str = '', multiline: FilterOrBool = True, password: FilterOrBool = False, lexer: Lexer | None = None, auto_suggest: AutoSuggest | None = None, completer: Completer | None = None, complete_while_typing: FilterOrBool = True, validator: Validator | None = None, accept_handler: BufferAcceptHandler | None = None, history: History | None = None, focusable: FilterOrBool = True, focus_on_click: FilterOrBool = False, wrap_lines: FilterOrBool = True, read_only: FilterOrBool = False, width: AnyDimension = None, height: AnyDimension = None, dont_extend_height: FilterOrBool = False, dont_extend_width: FilterOrBool = False, line_numbers: bool = False, get_line_prefix: GetLinePrefixCallable | None = None, scrollbar: bool = False, style: str = '', search_field: SearchToolbar | None = None, preview_search: FilterOrBool = True, prompt: AnyFormattedText = '', input_processors: list[Processor] | None = None, name: str = '')

	A simple input field.

This is a higher level abstraction on top of several other classes with
sane defaults.

This widget does have the most common options, but it does not intend to
cover every single use case. For more configurations options, you can
always build a text area manually, using a
Buffer,
BufferControl and
Window.

Buffer attributes:

	Parameters:

	
	text – The initial text.

	multiline – If True, allow multiline input.

	completer – Completer instance
for auto completion.

	complete_while_typing – Boolean.

	accept_handler – Called when Enter is pressed (This should be a
callable that takes a buffer as input).

	history – History instance.

	auto_suggest – AutoSuggest
instance for input suggestions.

BufferControl attributes:

	Parameters:

	
	password – When True, display using asterisks.

	focusable – When True, allow this widget to receive the focus.

	focus_on_click – When True, focus after mouse click.

	input_processors – None or a list of
Processor objects.

	validator – None or a Validator
object.

Window attributes:

	Parameters:

	
	lexer – Lexer instance for syntax
highlighting.

	wrap_lines – When True, don’t scroll horizontally, but wrap lines.

	width – Window width. (Dimension object.)

	height – Window height. (Dimension object.)

	scrollbar – When True, display a scroll bar.

	style – A style string.

	dont_extend_width – When True, don’t take up more width then the
preferred width reported by the control.

	dont_extend_height – When True, don’t take up more width then the
preferred height reported by the control.

	get_line_prefix – None or a callable that returns formatted text to
be inserted before a line. It takes a line number (int) and a
wrap_count and returns formatted text. This can be used for
implementation of line continuations, things like Vim “breakindent” and
so on.

Other attributes:

	Parameters:

	search_field – An optional SearchToolbar object.

	
property accept_handler: Callable[[Buffer], bool] | None

	The accept handler. Called when the user accepts the input.

	
property document: Document

	The Buffer document (text + cursor position).

	
property text: str

	The Buffer text.

	
class prompt_toolkit.widgets.VerticalLine

	A simple vertical line with a width of 1.

Filters

Filters decide whether something is active or not (they decide about a boolean
state). This is used to enable/disable features, like key bindings, parts of
the layout and other stuff. For instance, we could have a HasSearch filter
attached to some part of the layout, in order to show that part of the user
interface only while the user is searching.

Filters are made to avoid having to attach callbacks to all event in order to
propagate state. However, they are lazy, they don’t automatically propagate the
state of what they are observing. Only when a filter is called (it’s actually a
callable), it will calculate its value. So, its not really reactive
programming, but it’s made to fit for this framework.

Filters can be chained using & and | operations, and inverted using the
~ operator, for instance:

filter = has_focus('default') & ~ has_selection

	
class prompt_toolkit.filters.Always

	Always enable feature.

	
class prompt_toolkit.filters.Condition(func: Callable[[], bool])

	Turn any callable into a Filter. The callable is supposed to not take any
arguments.

This can be used as a decorator:

@Condition
def feature_is_active(): # `feature_is_active` becomes a Filter.
 return True

	Parameters:

	func – Callable which takes no inputs and returns a boolean.

	
class prompt_toolkit.filters.Filter

	Base class for any filter to activate/deactivate a feature, depending on a
condition.

The return value of __call__ will tell if the feature should be active.

	
prompt_toolkit.filters.HasFocus(value: FocusableElement) → Condition

	Enable when this buffer has the focus.

	
prompt_toolkit.filters.InEditingMode(editing_mode: EditingMode) → Condition

	Check whether a given editing mode is active. (Vi or Emacs.)

	
class prompt_toolkit.filters.Never

	Never enable feature.

	
prompt_toolkit.filters.has_focus(value: FocusableElement) → Condition

	Enable when this buffer has the focus.

	
prompt_toolkit.filters.in_editing_mode(editing_mode: EditingMode) → Condition

	Check whether a given editing mode is active. (Vi or Emacs.)

	
prompt_toolkit.filters.is_true(value: Filter | bool) → bool

	Test whether value is True. In case of a Filter, call it.

	Parameters:

	value – Boolean or Filter instance.

	
prompt_toolkit.filters.to_filter(bool_or_filter: Filter | bool) → Filter

	Accept both booleans and Filters as input and
turn it into a Filter.

	
class prompt_toolkit.filters.Filter

	Base class for any filter to activate/deactivate a feature, depending on a
condition.

The return value of __call__ will tell if the feature should be active.

	
class prompt_toolkit.filters.Condition(func: Callable[[], bool])

	Turn any callable into a Filter. The callable is supposed to not take any
arguments.

This can be used as a decorator:

@Condition
def feature_is_active(): # `feature_is_active` becomes a Filter.
 return True

	Parameters:

	func – Callable which takes no inputs and returns a boolean.

	
prompt_toolkit.filters.utils.is_true(value: Filter | bool) → bool

	Test whether value is True. In case of a Filter, call it.

	Parameters:

	value – Boolean or Filter instance.

	
prompt_toolkit.filters.utils.to_filter(bool_or_filter: Filter | bool) → Filter

	Accept both booleans and Filters as input and
turn it into a Filter.

Filters that accept a Application as argument.

	
prompt_toolkit.filters.app.has_focus(value: FocusableElement) → Condition

	Enable when this buffer has the focus.

	
prompt_toolkit.filters.app.in_editing_mode(editing_mode: EditingMode) → Condition

	Check whether a given editing mode is active. (Vi or Emacs.)

Key binding

	
class prompt_toolkit.key_binding.ConditionalKeyBindings(key_bindings: KeyBindingsBase, filter: Filter | bool = True)

	Wraps around a KeyBindings. Disable/enable all the key bindings according to
the given (additional) filter.:

@Condition
def setting_is_true():
 return True # or False

registry = ConditionalKeyBindings(key_bindings, setting_is_true)

When new key bindings are added to this object. They are also
enable/disabled according to the given filter.

	Parameters:

	
	registries – List of KeyBindings objects.

	filter – Filter object.

	
class prompt_toolkit.key_binding.DynamicKeyBindings(get_key_bindings: Callable[[], KeyBindingsBase | None])

	KeyBindings class that can dynamically returns any KeyBindings.

	Parameters:

	get_key_bindings – Callable that returns a KeyBindings instance.

	
class prompt_toolkit.key_binding.KeyBindings

	A container for a set of key bindings.

Example usage:

kb = KeyBindings()

@kb.add('c-t')
def _(event):
 print('Control-T pressed')

@kb.add('c-a', 'c-b')
def _(event):
 print('Control-A pressed, followed by Control-B')

@kb.add('c-x', filter=is_searching)
def _(event):
 print('Control-X pressed') # Works only if we are searching.

	
add(*keys: Keys | str, filter: FilterOrBool = True, eager: FilterOrBool = False, is_global: FilterOrBool = False, save_before: Callable[[KeyPressEvent], bool] = <function KeyBindings.<lambda>>, record_in_macro: FilterOrBool = True) → Callable[[T], T]

	Decorator for adding a key bindings.

	Parameters:

	
	filter – Filter to determine
when this key binding is active.

	eager – Filter or bool.
When True, ignore potential longer matches when this key binding is
hit. E.g. when there is an active eager key binding for Ctrl-X,
execute the handler immediately and ignore the key binding for
Ctrl-X Ctrl-E of which it is a prefix.

	is_global – When this key bindings is added to a Container or
Control, make it a global (always active) binding.

	save_before – Callable that takes an Event and returns True if
we should save the current buffer, before handling the event.
(That’s the default.)

	record_in_macro – Record these key bindings when a macro is
being recorded. (True by default.)

	
add_binding(*keys: Keys | str, filter: FilterOrBool = True, eager: FilterOrBool = False, is_global: FilterOrBool = False, save_before: Callable[[KeyPressEvent], bool] = <function KeyBindings.<lambda>>, record_in_macro: FilterOrBool = True) → Callable[[T], T]

	Decorator for adding a key bindings.

	Parameters:

	
	filter – Filter to determine
when this key binding is active.

	eager – Filter or bool.
When True, ignore potential longer matches when this key binding is
hit. E.g. when there is an active eager key binding for Ctrl-X,
execute the handler immediately and ignore the key binding for
Ctrl-X Ctrl-E of which it is a prefix.

	is_global – When this key bindings is added to a Container or
Control, make it a global (always active) binding.

	save_before – Callable that takes an Event and returns True if
we should save the current buffer, before handling the event.
(That’s the default.)

	record_in_macro – Record these key bindings when a macro is
being recorded. (True by default.)

	
get_bindings_for_keys(keys: Tuple[Keys | str, ...]) → list[prompt_toolkit.key_binding.key_bindings.Binding]

	Return a list of key bindings that can handle this key.
(This return also inactive bindings, so the filter still has to be
called, for checking it.)

	Parameters:

	keys – tuple of keys.

	
get_bindings_starting_with_keys(keys: Tuple[Keys | str, ...]) → list[prompt_toolkit.key_binding.key_bindings.Binding]

	Return a list of key bindings that handle a key sequence starting with
keys. (It does only return bindings for which the sequences are
longer than keys. And like get_bindings_for_keys, it also includes
inactive bindings.)

	Parameters:

	keys – tuple of keys.

	
remove(*args: Keys | str | KeyHandlerCallable) → None

	Remove a key binding.

This expects either a function that was given to add method as
parameter or a sequence of key bindings.

Raises ValueError when no bindings was found.

Usage:

remove(handler) # Pass handler.
remove('c-x', 'c-a') # Or pass the key bindings.

	
remove_binding(*args: Keys | str | KeyHandlerCallable) → None

	Remove a key binding.

This expects either a function that was given to add method as
parameter or a sequence of key bindings.

Raises ValueError when no bindings was found.

Usage:

remove(handler) # Pass handler.
remove('c-x', 'c-a') # Or pass the key bindings.

	
class prompt_toolkit.key_binding.KeyBindingsBase

	Interface for a KeyBindings.

	
abstract property bindings: list[prompt_toolkit.key_binding.key_bindings.Binding]

	List of Binding objects.
(These need to be exposed, so that KeyBindings objects can be merged
together.)

	
abstract get_bindings_for_keys(keys: Tuple[Keys | str, ...]) → list[prompt_toolkit.key_binding.key_bindings.Binding]

	Return a list of key bindings that can handle these keys.
(This return also inactive bindings, so the filter still has to be
called, for checking it.)

	Parameters:

	keys – tuple of keys.

	
abstract get_bindings_starting_with_keys(keys: Tuple[Keys | str, ...]) → list[prompt_toolkit.key_binding.key_bindings.Binding]

	Return a list of key bindings that handle a key sequence starting with
keys. (It does only return bindings for which the sequences are
longer than keys. And like get_bindings_for_keys, it also includes
inactive bindings.)

	Parameters:

	keys – tuple of keys.

	
prompt_toolkit.key_binding.merge_key_bindings(bindings: Sequence[KeyBindingsBase]) → _MergedKeyBindings

	Merge multiple Keybinding objects together.

Usage:

bindings = merge_key_bindings([bindings1, bindings2, ...])

Default key bindings.:

key_bindings = load_key_bindings()
app = Application(key_bindings=key_bindings)

	
prompt_toolkit.key_binding.defaults.load_key_bindings() → KeyBindingsBase

	Create a KeyBindings object that contains the default key bindings.

	
class prompt_toolkit.key_binding.vi_state.ViState

	Mutable class to hold the state of the Vi navigation.

	
property input_mode: InputMode

	Get InputMode.

	
last_character_find: CharacterFind | None

	None or CharacterFind instance. (This is used to repeat the last
search in Vi mode, by pressing the ‘n’ or ‘N’ in navigation mode.)

	
named_registers: dict[str, ClipboardData]

	Named registers. Maps register name (e.g. ‘a’) to
ClipboardData instances.

	
reset() → None

	Reset state, go back to the given mode. INSERT by default.

	
tilde_operator

	When true, make ~ act as an operator.

	
waiting_for_digraph

	Waiting for digraph.

An KeyProcessor receives callbacks for the keystrokes parsed from
the input in the InputStream instance.

The KeyProcessor will according to the implemented keybindings call the
correct callbacks when new key presses are feed through feed.

	
class prompt_toolkit.key_binding.key_processor.KeyPress(key: Keys | str, data: str | None = None)

	
	Parameters:

	
	key – A Keys instance or text (one character).

	data – The received string on stdin. (Often vt100 escape codes.)

	
class prompt_toolkit.key_binding.key_processor.KeyPressEvent(key_processor_ref: ReferenceType[KeyProcessor], arg: str | None, key_sequence: list[prompt_toolkit.key_binding.key_processor.KeyPress], previous_key_sequence: list[prompt_toolkit.key_binding.key_processor.KeyPress], is_repeat: bool)

	Key press event, delivered to key bindings.

	Parameters:

	
	key_processor_ref – Weak reference to the KeyProcessor.

	arg – Repetition argument.

	key_sequence – List of KeyPress instances.

	previouskey_sequence – Previous list of KeyPress instances.

	is_repeat – True when the previous event was delivered to the same handler.

	
property app: Application[Any]

	The current Application object.

	
append_to_arg_count(data: str) → None

	Add digit to the input argument.

	Parameters:

	data – the typed digit as string

	
property arg: int

	Repetition argument.

	
property arg_present: bool

	True if repetition argument was explicitly provided.

	
property cli: Application[Any]

	For backward-compatibility.

	
property current_buffer: Buffer

	The current buffer.

	
is_repeat

	True when the previous key sequence was handled by the same handler.

	
class prompt_toolkit.key_binding.key_processor.KeyProcessor(key_bindings: KeyBindingsBase)

	Statemachine that receives KeyPress instances and according to the
key bindings in the given KeyBindings, calls the matching handlers.

p = KeyProcessor(key_bindings)

Send keys into the processor.
p.feed(KeyPress(Keys.ControlX, '

 Related projects

Related projects

There are some other Python libraries that provide similar functionality that
are also worth checking out:

	Urwid [http://urwid.org/]

	Textual [https://textual.textualize.io/]

	Rich [https://rich.readthedocs.io/]

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 prompt_toolkit	

 	
 	
 prompt_toolkit.application	

 	
 	
 prompt_toolkit.auto_suggest	

 	
 	
 prompt_toolkit.buffer	

 	
 	
 prompt_toolkit.clipboard	

 	
 	
 prompt_toolkit.clipboard.pyperclip	

 	
 	
 prompt_toolkit.completion	

 	
 	
 prompt_toolkit.document	

 	
 	
 prompt_toolkit.enums	

 	
 	
 prompt_toolkit.eventloop	

 	
 	
 prompt_toolkit.eventloop.inputhook	

 	
 	
 prompt_toolkit.eventloop.utils	

 	
 	
 prompt_toolkit.filters	

 	
 	
 prompt_toolkit.filters.app	

 	
 	
 prompt_toolkit.filters.utils	

 	
 	
 prompt_toolkit.formatted_text	

 	
 	
 prompt_toolkit.history	

 	
 	
 prompt_toolkit.input	

 	
 	
 prompt_toolkit.input.ansi_escape_sequences	

 	
 	
 prompt_toolkit.input.vt100	

 	
 	
 prompt_toolkit.input.vt100_parser	

 	
 	
 prompt_toolkit.input.win32	

 	
 	
 prompt_toolkit.key_binding	

 	
 	
 prompt_toolkit.key_binding.defaults	

 	
 	
 prompt_toolkit.key_binding.key_processor	

 	
 	
 prompt_toolkit.key_binding.vi_state	

 	
 	
 prompt_toolkit.keys	

 	
 	
 prompt_toolkit.layout	

 	
 	
 prompt_toolkit.layout.processors	

 	
 	
 prompt_toolkit.layout.screen	

 	
 	
 prompt_toolkit.layout.utils	

 	
 	
 prompt_toolkit.lexers	

 	
 	
 prompt_toolkit.output	

 	
 	
 prompt_toolkit.output.vt100	

 	
 	
 prompt_toolkit.output.win32	

 	
 	
 prompt_toolkit.patch_stdout	

 	
 	
 prompt_toolkit.renderer	

 	
 	
 prompt_toolkit.selection	

 	
 	
 prompt_toolkit.shortcuts	

 	
 	
 prompt_toolkit.shortcuts.progress_bar.formatters	

 	
 	
 prompt_toolkit.styles	

 	
 	
 prompt_toolkit.validation	

 	
 	
 prompt_toolkit.widgets	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	accept_handler (prompt_toolkit.widgets.TextArea property)

 	add() (prompt_toolkit.key_binding.KeyBindings method)

 	add_binding() (prompt_toolkit.key_binding.KeyBindings method)

 	AdjustBrightnessStyleTransformation (class in prompt_toolkit.styles)

 	AfterInput (class in prompt_toolkit.layout.processors)

 	Always (class in prompt_toolkit.filters)

 	ANSI (class in prompt_toolkit.formatted_text)

 	app (prompt_toolkit.key_binding.key_processor.KeyPressEvent property)

 	append_string() (prompt_toolkit.history.History method)

 	append_style_to_content() (prompt_toolkit.layout.screen.Screen method)

 	append_to_arg_count() (prompt_toolkit.key_binding.key_processor.KeyPressEvent method)

 	append_to_history() (prompt_toolkit.buffer.Buffer method)

 	AppendAutoSuggestion (class in prompt_toolkit.layout.processors)

 	Application (class in prompt_toolkit.application)

 	applied_scroll_offsets (prompt_toolkit.layout.WindowRenderInfo property)

 	
 	apply_completion() (prompt_toolkit.buffer.Buffer method)

 	apply_search() (prompt_toolkit.buffer.Buffer method)

 	apply_transformation() (prompt_toolkit.layout.processors.Processor method)

 	AppSession (class in prompt_toolkit.application)

 	arg (prompt_toolkit.key_binding.key_processor.KeyPressEvent property)

 	arg_present (prompt_toolkit.key_binding.key_processor.KeyPressEvent property)

 	ask_for_cpr() (prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	attach() (prompt_toolkit.input.Input method)

 	(prompt_toolkit.input.vt100.Vt100Input method)

 	Attrs (class in prompt_toolkit.styles)

 	auto_down() (prompt_toolkit.buffer.Buffer method)

 	auto_up() (prompt_toolkit.buffer.Buffer method)

 	AutoSuggest (class in prompt_toolkit.auto_suggest)

 	AutoSuggestFromHistory (class in prompt_toolkit.auto_suggest)

B

 	
 	Bar (class in prompt_toolkit.shortcuts.progress_bar.formatters)

 	BaseStyle (class in prompt_toolkit.styles)

 	BeforeInput (class in prompt_toolkit.layout.processors)

 	bell() (prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	bgcolor (prompt_toolkit.styles.Attrs attribute)

 	bindings (prompt_toolkit.key_binding.KeyBindingsBase property)

 	blink (prompt_toolkit.styles.Attrs attribute)

 	
 	BLOCK (prompt_toolkit.selection.SelectionType attribute)

 	bold (prompt_toolkit.styles.Attrs attribute)

 	bottom_visible (prompt_toolkit.layout.WindowRenderInfo property)

 	Box (class in prompt_toolkit.widgets)

 	Buffer (class in prompt_toolkit.buffer)

 	buffer_has_focus (prompt_toolkit.layout.Layout property)

 	BufferControl (class in prompt_toolkit.layout)

 	Button (class in prompt_toolkit.widgets)

 	button_dialog() (in module prompt_toolkit.shortcuts)

C

 	
 	call_soon_threadsafe() (in module prompt_toolkit.eventloop)

 	(in module prompt_toolkit.eventloop.utils)

 	cancel_and_wait_for_background_tasks() (prompt_toolkit.application.Application method)

 	cancel_completion() (prompt_toolkit.buffer.Buffer method)

 	center_visible_line() (prompt_toolkit.layout.WindowRenderInfo method)

 	Char (class in prompt_toolkit.layout.screen)

 	char_before_cursor (prompt_toolkit.document.Document property)

 	CHARACTERS (prompt_toolkit.selection.SelectionType attribute)

 	Checkbox (class in prompt_toolkit.widgets)

 	clear() (in module prompt_toolkit.shortcuts)

 	(prompt_toolkit.renderer.Renderer method)

 	clear_title() (in module prompt_toolkit.shortcuts)

 	(prompt_toolkit.output.Output method)

 	cli (prompt_toolkit.key_binding.key_processor.KeyPressEvent property)

 	Clipboard (class in prompt_toolkit.clipboard)

 	ClipboardData (class in prompt_toolkit.clipboard)

 	close() (prompt_toolkit.eventloop.inputhook.InputHookSelector method)

 	(prompt_toolkit.input.Input method)

 	(prompt_toolkit.patch_stdout.StdoutProxy method)

 	closed (prompt_toolkit.input.Input property)

 	color (prompt_toolkit.styles.Attrs attribute)

 	color_depth (prompt_toolkit.application.Application property)

 	ColorColumn (class in prompt_toolkit.layout)

 	ColorDepth (class in prompt_toolkit.output)

 	columns (prompt_toolkit.data_structures.Size attribute)

 	complete_index (prompt_toolkit.buffer.CompletionState attribute)

 	complete_next() (prompt_toolkit.buffer.Buffer method)

 	complete_previous() (prompt_toolkit.buffer.Buffer method)

 	CompleteEvent (class in prompt_toolkit.completion)

 	Completer (class in prompt_toolkit.completion)

 	CompleteStyle (class in prompt_toolkit.shortcuts)

 	Completion (class in prompt_toolkit.completion)

 	completion_requested (prompt_toolkit.completion.CompleteEvent attribute)

 	completions (prompt_toolkit.buffer.CompletionState attribute)

 	CompletionsMenu (class in prompt_toolkit.layout)

 	CompletionState (class in prompt_toolkit.buffer)

 	Condition (class in prompt_toolkit.filters), [1]

 	ConditionalAutoSuggest (class in prompt_toolkit.auto_suggest)

 	ConditionalCompleter (class in prompt_toolkit.completion)

 	ConditionalContainer (class in prompt_toolkit.layout)

 	ConditionalKeyBindings (class in prompt_toolkit.key_binding)

 	ConditionalMargin (class in prompt_toolkit.layout)

 	ConditionalProcessor (class in prompt_toolkit.layout.processors)

 	ConditionalStyleTransformation (class in prompt_toolkit.styles)

 	
 	ConditionalValidator (class in prompt_toolkit.validation)

 	confirm() (in module prompt_toolkit.shortcuts)

 	Container (class in prompt_toolkit.layout)

 	content_height (prompt_toolkit.layout.WindowRenderInfo property)

 	cooked_mode (class in prompt_toolkit.input.vt100)

 	cooked_mode() (prompt_toolkit.input.Input method)

 	copy_selection() (prompt_toolkit.buffer.Buffer method)

 	cpr_not_supported_callback() (prompt_toolkit.application.Application method)

 	create_app_session() (in module prompt_toolkit.application)

 	create_background_task() (prompt_toolkit.application.Application method)

 	create_confirm_session() (in module prompt_toolkit.shortcuts)

 	create_content() (prompt_toolkit.layout.BufferControl method)

 	(prompt_toolkit.layout.UIControl method)

 	create_default_formatters() (in module prompt_toolkit.shortcuts.progress_bar.formatters)

 	create_input() (in module prompt_toolkit.input)

 	create_margin() (prompt_toolkit.layout.Margin method)

 	create_output() (in module prompt_toolkit.output)

 	create_pipe_input() (in module prompt_toolkit.input)

 	current_buffer (prompt_toolkit.application.Application property)

 	(prompt_toolkit.key_binding.key_processor.KeyPressEvent property)

 	(prompt_toolkit.layout.Layout property)

 	current_char (prompt_toolkit.document.Document property)

 	current_completion (prompt_toolkit.buffer.CompletionState property)

 	current_control (prompt_toolkit.layout.Layout property)

 	current_line (prompt_toolkit.document.Document property)

 	current_line_after_cursor (prompt_toolkit.document.Document property)

 	current_line_before_cursor (prompt_toolkit.document.Document property)

 	current_search_state (prompt_toolkit.application.Application property)

 	current_window (prompt_toolkit.layout.Layout property)

 	cursor_backward() (prompt_toolkit.output.Output method)

 	cursor_down() (prompt_toolkit.buffer.Buffer method)

 	(prompt_toolkit.output.Output method)

 	cursor_forward() (prompt_toolkit.output.Output method)

 	cursor_goto() (prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	cursor_position (prompt_toolkit.document.Document property)

 	(prompt_toolkit.layout.WindowRenderInfo property)

 	cursor_position_col (prompt_toolkit.document.Document property)

 	cursor_position_row (prompt_toolkit.document.Document property)

 	cursor_positions (prompt_toolkit.layout.screen.Screen attribute)

 	cursor_up() (prompt_toolkit.buffer.Buffer method)

 	(prompt_toolkit.output.Output method)

 	cut_selection() (prompt_toolkit.buffer.Buffer method)

 	(prompt_toolkit.document.Document method)

D

 	
 	DeduplicateCompleter (class in prompt_toolkit.completion)

 	default() (prompt_toolkit.output.ColorDepth class method)

 	DEFAULT_BUFFER (in module prompt_toolkit.enums)

 	delete() (prompt_toolkit.buffer.Buffer method)

 	delete_before_cursor() (prompt_toolkit.buffer.Buffer method)

 	DEPTH_1_BIT (prompt_toolkit.output.ColorDepth attribute)

 	DEPTH_24_BIT (prompt_toolkit.output.ColorDepth attribute)

 	DEPTH_4_BIT (prompt_toolkit.output.ColorDepth attribute)

 	DEPTH_8_BIT (prompt_toolkit.output.ColorDepth attribute)

 	detach() (prompt_toolkit.input.Input method)

 	(prompt_toolkit.input.vt100.Vt100Input method)

 	Dimension (class in prompt_toolkit.layout)

 	disable_autowrap() (prompt_toolkit.output.Output method)

 	disable_bracketed_paste() (prompt_toolkit.output.Output method)

 	disable_mouse_support() (prompt_toolkit.output.Output method)

 	display_meta (prompt_toolkit.completion.Completion property)

 	display_meta_text (prompt_toolkit.completion.Completion property)

 	display_text (prompt_toolkit.completion.Completion property)

 	displayed_lines (prompt_toolkit.layout.WindowRenderInfo property)

 	DisplayMultipleCursors (class in prompt_toolkit.layout.processors)

 	Document (class in prompt_toolkit.document)

 	document (prompt_toolkit.buffer.Buffer property)

 	(prompt_toolkit.widgets.TextArea property)

 	document_for_search() (prompt_toolkit.buffer.Buffer method)

 	
 	draw_all_floats() (prompt_toolkit.layout.screen.Screen method)

 	draw_with_z_index() (prompt_toolkit.layout.screen.Screen method)

 	DummyApplication (class in prompt_toolkit.application)

 	DummyAutoSuggest (class in prompt_toolkit.auto_suggest)

 	DummyClipboard (class in prompt_toolkit.clipboard)

 	DummyCompleter (class in prompt_toolkit.completion)

 	DummyControl (class in prompt_toolkit.layout)

 	DummyHistory (class in prompt_toolkit.history)

 	DummyInput (class in prompt_toolkit.input)

 	DummyOutput (class in prompt_toolkit.output)

 	DummyProcessor (class in prompt_toolkit.layout.processors)

 	DummyStyle (class in prompt_toolkit.styles)

 	DummyStyleTransformation (class in prompt_toolkit.styles)

 	DummyValidator (class in prompt_toolkit.validation)

 	DynamicAutoSuggest (class in prompt_toolkit.auto_suggest)

 	DynamicClipboard (class in prompt_toolkit.clipboard)

 	DynamicCompleter (class in prompt_toolkit.completion)

 	DynamicContainer (class in prompt_toolkit.layout)

 	DynamicKeyBindings (class in prompt_toolkit.key_binding)

 	DynamicLexer (class in prompt_toolkit.lexers)

 	DynamicProcessor (class in prompt_toolkit.layout.processors)

 	DynamicStyle (class in prompt_toolkit.styles)

 	DynamicStyleTransformation (class in prompt_toolkit.styles)

 	DynamicValidator (class in prompt_toolkit.validation)

E

 	
 	EditReadOnlyBuffer

 	empty_line_count_at_the_end() (prompt_toolkit.document.Document method)

 	empty_queue() (prompt_toolkit.key_binding.key_processor.KeyProcessor method)

 	enable_autowrap() (prompt_toolkit.output.Output method)

 	enable_bracketed_paste() (prompt_toolkit.output.Output method)

 	enable_mouse_support() (prompt_toolkit.output.Output method)

 	encoding() (prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	end_of_paragraph() (prompt_toolkit.document.Document method)

 	enter_alternate_screen() (prompt_toolkit.output.Output method)

 	
 	erase() (prompt_toolkit.renderer.Renderer method)

 	erase_down() (prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	erase_end_of_line() (prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	erase_screen() (prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	exact() (prompt_toolkit.layout.Dimension class method)

 	ExecutableCompleter (class in prompt_toolkit.completion)

 	exit() (prompt_toolkit.application.Application method)

 	explode_text_fragments() (in module prompt_toolkit.layout.utils)

F

 	
 	feed() (prompt_toolkit.input.vt100_parser.Vt100Parser method)

 	(prompt_toolkit.key_binding.key_processor.KeyProcessor method)

 	feed_and_flush() (prompt_toolkit.input.vt100_parser.Vt100Parser method)

 	feed_multiple() (prompt_toolkit.key_binding.key_processor.KeyProcessor method)

 	FileHistory (class in prompt_toolkit.history)

 	fileno() (prompt_toolkit.input.Input method)

 	(prompt_toolkit.output.DummyOutput method)

 	(prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	fill_area() (prompt_toolkit.layout.screen.Screen method)

 	Filter (class in prompt_toolkit.filters), [1]

 	find() (prompt_toolkit.document.Document method)

 	find_all() (prompt_toolkit.document.Document method)

 	find_all_windows() (prompt_toolkit.layout.Layout method)

 	find_backwards() (prompt_toolkit.document.Document method)

 	find_boundaries_of_current_word() (prompt_toolkit.document.Document method)

 	find_enclosing_bracket_left() (prompt_toolkit.document.Document method)

 	find_enclosing_bracket_right() (prompt_toolkit.document.Document method)

 	find_matching_bracket_position() (prompt_toolkit.document.Document method)

 	find_next_matching_line() (prompt_toolkit.document.Document method)

 	find_next_word_beginning() (prompt_toolkit.document.Document method)

 	find_next_word_ending() (prompt_toolkit.document.Document method)

 	find_previous_matching_line() (prompt_toolkit.document.Document method)

 	find_previous_word_beginning() (prompt_toolkit.document.Document method)

 	find_previous_word_ending() (prompt_toolkit.document.Document method)

 	find_start_of_previous_word() (prompt_toolkit.document.Document method)

 	first_visible_line() (prompt_toolkit.layout.WindowRenderInfo method)

 	Float (class in prompt_toolkit.layout)

 	FloatContainer (class in prompt_toolkit.layout)

 	
 	flush() (prompt_toolkit.input.Input method)

 	(prompt_toolkit.input.vt100_parser.Vt100Parser method)

 	(prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	(prompt_toolkit.patch_stdout.StdoutProxy method)

 	flush_keys() (prompt_toolkit.input.Input method)

 	(prompt_toolkit.input.vt100.Vt100Input method)

 	focus() (prompt_toolkit.layout.Layout method)

 	focus_last() (prompt_toolkit.layout.Layout method)

 	focus_next() (prompt_toolkit.layout.Layout method)

 	focus_previous() (prompt_toolkit.layout.Layout method)

 	format() (prompt_toolkit.formatted_text.ANSI method)

 	(prompt_toolkit.formatted_text.HTML method)

 	FormattedText (class in prompt_toolkit.formatted_text)

 	FormattedTextControl (class in prompt_toolkit.layout)

 	Formatter (class in prompt_toolkit.shortcuts.progress_bar.formatters)

 	fragment_list_len() (in module prompt_toolkit.formatted_text)

 	fragment_list_to_text() (in module prompt_toolkit.formatted_text)

 	fragment_list_width() (in module prompt_toolkit.formatted_text)

 	Frame (class in prompt_toolkit.widgets)

 	from_callable() (prompt_toolkit.validation.Validator class method)

 	from_dict() (prompt_toolkit.styles.Style class method)

 	from_env() (prompt_toolkit.output.ColorDepth class method)

 	from_filename() (prompt_toolkit.lexers.PygmentsLexer class method)

 	from_nested_dict() (prompt_toolkit.completion.NestedCompleter class method)

 	from_pty() (prompt_toolkit.output.vt100.Vt100_Output class method)

 	from_pygments_lexer_cls() (prompt_toolkit.lexers.RegexSync class method)

 	full_height_visible (prompt_toolkit.layout.WindowRenderInfo property)

 	FuzzyCompleter (class in prompt_toolkit.completion)

 	FuzzyWordCompleter (class in prompt_toolkit.completion)

G

 	
 	get_app() (in module prompt_toolkit.application)

 	get_app_or_none() (in module prompt_toolkit.application)

 	get_attrs_for_style_str() (prompt_toolkit.styles.BaseStyle method)

 	(prompt_toolkit.styles.Style method)

 	get_bindings_for_keys() (prompt_toolkit.key_binding.KeyBindings method)

 	(prompt_toolkit.key_binding.KeyBindingsBase method)

 	get_bindings_starting_with_keys() (prompt_toolkit.key_binding.KeyBindings method)

 	(prompt_toolkit.key_binding.KeyBindingsBase method)

 	get_buffer_by_name() (prompt_toolkit.layout.Layout method)

 	get_children() (prompt_toolkit.layout.Container method)

 	get_column_cursor_position() (prompt_toolkit.document.Document method)

 	get_common_complete_suffix() (in module prompt_toolkit.completion)

 	get_completions() (prompt_toolkit.completion.Completer method)

 	get_completions_async() (prompt_toolkit.completion.Completer method)

 	(prompt_toolkit.completion.ThreadedCompleter method)

 	get_cursor_down_position() (prompt_toolkit.document.Document method)

 	get_cursor_left_position() (prompt_toolkit.document.Document method)

 	get_cursor_position() (prompt_toolkit.layout.screen.Screen method)

 	get_cursor_right_position() (prompt_toolkit.document.Document method)

 	get_cursor_up_position() (prompt_toolkit.document.Document method)

 	get_data() (prompt_toolkit.clipboard.Clipboard method)

 	get_default_color_depth() (prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	get_end_of_document_position() (prompt_toolkit.document.Document method)

 	get_end_of_line_position() (prompt_toolkit.document.Document method)

 	get_focusable_windows() (prompt_toolkit.layout.Layout method)

 	get_height_for_line() (prompt_toolkit.layout.UIContent method)

 	(prompt_toolkit.layout.WindowRenderInfo method)

 	
 	get_invalidate_events() (prompt_toolkit.layout.BufferControl method)

 	(prompt_toolkit.layout.UIControl method)

 	get_key_bindings() (prompt_toolkit.layout.BufferControl method)

 	(prompt_toolkit.layout.Container method)

 	(prompt_toolkit.layout.UIControl method)

 	get_menu_position() (prompt_toolkit.layout.screen.Screen method)

 	get_parent() (prompt_toolkit.layout.Layout method)

 	get_rows_below_cursor_position() (prompt_toolkit.output.Output method)

 	get_search_position() (prompt_toolkit.buffer.Buffer method)

 	get_size() (prompt_toolkit.output.Output method)

 	get_start_of_document_position() (prompt_toolkit.document.Document method)

 	get_start_of_line_position() (prompt_toolkit.document.Document method)

 	get_strings() (prompt_toolkit.history.History method)

 	get_suggestion() (prompt_toolkit.auto_suggest.AutoSuggest method)

 	get_suggestion_async() (prompt_toolkit.auto_suggest.AutoSuggest method)

 	(prompt_toolkit.auto_suggest.ThreadedAutoSuggest method)

 	get_sync_start_position() (prompt_toolkit.lexers.RegexSync method)

 	(prompt_toolkit.lexers.SyntaxSync method)

 	get_traceback_from_context() (in module prompt_toolkit.eventloop)

 	(in module prompt_toolkit.eventloop.utils)

 	get_used_style_strings() (prompt_toolkit.application.Application method)

 	get_visible_focusable_windows() (prompt_toolkit.layout.Layout method)

 	get_width() (prompt_toolkit.layout.Margin method)

 	(prompt_toolkit.layout.PromptMargin method)

 	get_word_before_cursor() (prompt_toolkit.document.Document method)

 	get_word_under_cursor() (prompt_toolkit.document.Document method)

 	go_to_completion() (prompt_toolkit.buffer.Buffer method)

 	go_to_history() (prompt_toolkit.buffer.Buffer method)

 	go_to_index() (prompt_toolkit.buffer.CompletionState method)

H

 	
 	has_focus() (in module prompt_toolkit.filters)

 	(in module prompt_toolkit.filters.app)

 	(prompt_toolkit.layout.Layout method)

 	has_match_at_current_position() (prompt_toolkit.document.Document method)

 	HasFocus() (in module prompt_toolkit.filters)

 	height_is_known (prompt_toolkit.renderer.Renderer property)

 	hidden (prompt_toolkit.styles.Attrs attribute)

 	hide_cursor() (prompt_toolkit.output.Output method)

 	HighlightIncrementalSearchProcessor (class in prompt_toolkit.layout.processors)

 	
 	HighlightMatchingBracketProcessor (class in prompt_toolkit.layout.processors)

 	HighlightSearchProcessor (class in prompt_toolkit.layout.processors)

 	HighlightSelectionProcessor (class in prompt_toolkit.layout.processors)

 	History (class in prompt_toolkit.history)

 	history_backward() (prompt_toolkit.buffer.Buffer method)

 	history_forward() (prompt_toolkit.buffer.Buffer method)

 	HorizontalAlign (class in prompt_toolkit.layout)

 	HorizontalLine (class in prompt_toolkit.widgets)

 	HSplit (class in prompt_toolkit.layout)

 	HTML (class in prompt_toolkit.formatted_text)

I

 	
 	in_editing_mode() (in module prompt_toolkit.filters)

 	(in module prompt_toolkit.filters.app)

 	in_terminal() (in module prompt_toolkit.application)

 	indent() (in module prompt_toolkit.buffer)

 	InEditingMode() (in module prompt_toolkit.filters)

 	InMemoryClipboard (class in prompt_toolkit.clipboard)

 	InMemoryHistory (class in prompt_toolkit.history)

 	Input (class in prompt_toolkit.input)

 	input_dialog() (in module prompt_toolkit.shortcuts)

 	input_line_to_visible_line (prompt_toolkit.layout.WindowRenderInfo property)

 	input_mode (prompt_toolkit.key_binding.vi_state.ViState property)

 	InputHookContext (class in prompt_toolkit.eventloop.inputhook)

 	InputHookSelector (class in prompt_toolkit.eventloop.inputhook)

 	insert_after() (prompt_toolkit.document.Document method)

 	insert_before() (prompt_toolkit.document.Document method)

 	insert_line_above() (prompt_toolkit.buffer.Buffer method)

 	insert_line_below() (prompt_toolkit.buffer.Buffer method)

 	insert_text() (prompt_toolkit.buffer.Buffer method)

 	invalidate() (prompt_toolkit.application.Application method)

 	
 	invalidated (prompt_toolkit.application.Application property)

 	invalidation_hash() (prompt_toolkit.lexers.Lexer method)

 	(prompt_toolkit.styles.BaseStyle method)

 	(prompt_toolkit.styles.StyleTransformation method)

 	InvalidLayoutError (class in prompt_toolkit.layout)

 	is_container (class in prompt_toolkit.layout)

 	is_cursor_at_the_end (prompt_toolkit.document.Document property)

 	is_cursor_at_the_end_of_line (prompt_toolkit.document.Document property)

 	is_focusable() (prompt_toolkit.layout.UIControl method)

 	is_formatted_text() (in module prompt_toolkit.formatted_text)

 	is_modal() (prompt_toolkit.layout.Container method)

 	is_repeat (prompt_toolkit.key_binding.key_processor.KeyPressEvent attribute)

 	is_returnable (prompt_toolkit.buffer.Buffer property)

 	is_running (prompt_toolkit.application.Application property)

 	is_searching (prompt_toolkit.layout.Layout property)

 	is_true() (in module prompt_toolkit.filters)

 	(in module prompt_toolkit.filters.utils)

 	is_zero() (prompt_toolkit.layout.Dimension method)

 	italic (prompt_toolkit.styles.Attrs attribute)

 	IterationsPerSecond (class in prompt_toolkit.shortcuts.progress_bar.formatters)

J

 	
 	join_next_line() (prompt_toolkit.buffer.Buffer method)

 	
 	join_selected_lines() (prompt_toolkit.buffer.Buffer method)

K

 	
 	key_processor (prompt_toolkit.application.Application attribute)

 	KeyBindings (class in prompt_toolkit.key_binding)

 	KeyBindingsBase (class in prompt_toolkit.key_binding)

 	
 	KeyPress (class in prompt_toolkit.key_binding.key_processor)

 	KeyPressEvent (class in prompt_toolkit.key_binding.key_processor)

 	KeyProcessor (class in prompt_toolkit.key_binding.key_processor)

 	Keys (class in prompt_toolkit.keys)

L

 	
 	Label (class in prompt_toolkit.shortcuts.progress_bar.formatters)

 	(class in prompt_toolkit.widgets)

 	last_character_find (prompt_toolkit.key_binding.vi_state.ViState attribute)

 	last_non_blank_of_current_line_position() (prompt_toolkit.document.Document method)

 	last_rendered_screen (prompt_toolkit.renderer.Renderer property)

 	last_visible_line() (prompt_toolkit.layout.WindowRenderInfo method)

 	Layout (class in prompt_toolkit.layout)

 	leading_whitespace_in_current_line (prompt_toolkit.document.Document property)

 	lex_document() (prompt_toolkit.lexers.Lexer method)

 	(prompt_toolkit.lexers.PygmentsLexer method)

 	
 	Lexer (class in prompt_toolkit.lexers)

 	line_count (prompt_toolkit.document.Document property)

 	lines (prompt_toolkit.document.Document property)

 	LINES (prompt_toolkit.selection.SelectionType attribute)

 	lines_from_current (prompt_toolkit.document.Document property)

 	load() (prompt_toolkit.history.History method)

 	(prompt_toolkit.history.ThreadedHistory method)

 	load_history_if_not_yet_loaded() (prompt_toolkit.buffer.Buffer method)

 	load_history_strings() (prompt_toolkit.history.History method)

 	load_key_bindings() (in module prompt_toolkit.key_binding.defaults)

M

 	
 	Margin (class in prompt_toolkit.layout)

 	menu_positions (prompt_toolkit.layout.screen.Screen attribute)

 	MenuContainer (class in prompt_toolkit.widgets)

 	merge_completers() (in module prompt_toolkit.completion)

 	merge_formatted_text() (in module prompt_toolkit.formatted_text)

 	merge_key_bindings() (in module prompt_toolkit.key_binding)

 	merge_processors() (in module prompt_toolkit.layout.processors)

 	merge_style_transformations() (in module prompt_toolkit.styles)

 	merge_styles() (in module prompt_toolkit.styles)

 	message_dialog() (in module prompt_toolkit.shortcuts)

 	
 module

 	prompt_toolkit.application

 	prompt_toolkit.auto_suggest

 	prompt_toolkit.buffer

 	prompt_toolkit.clipboard

 	prompt_toolkit.clipboard.pyperclip

 	prompt_toolkit.completion

 	prompt_toolkit.document

 	prompt_toolkit.enums

 	prompt_toolkit.eventloop

 	prompt_toolkit.eventloop.inputhook

 	prompt_toolkit.eventloop.utils

 	prompt_toolkit.filters

 	prompt_toolkit.filters.app

 	prompt_toolkit.filters.utils

 	prompt_toolkit.formatted_text

 	prompt_toolkit.history

 	prompt_toolkit.input

 	prompt_toolkit.input.ansi_escape_sequences

 	prompt_toolkit.input.vt100

 	prompt_toolkit.input.vt100_parser

 	prompt_toolkit.input.win32

 	prompt_toolkit.key_binding

 	prompt_toolkit.key_binding.defaults

 	prompt_toolkit.key_binding.key_processor

 	prompt_toolkit.key_binding.vi_state

 	prompt_toolkit.keys

 	prompt_toolkit.layout

 	prompt_toolkit.layout.processors

 	prompt_toolkit.layout.screen

 	prompt_toolkit.layout.utils

 	prompt_toolkit.lexers

 	prompt_toolkit.output

 	prompt_toolkit.output.vt100

 	prompt_toolkit.output.win32

 	prompt_toolkit.patch_stdout

 	prompt_toolkit.renderer

 	prompt_toolkit.selection

 	prompt_toolkit.shortcuts

 	prompt_toolkit.shortcuts.progress_bar.formatters

 	prompt_toolkit.styles

 	prompt_toolkit.validation

 	prompt_toolkit.widgets

 	
 	mouse_handler() (prompt_toolkit.layout.BufferControl method)

 	(prompt_toolkit.layout.FormattedTextControl method)

 	(prompt_toolkit.layout.UIControl method)

 	move_cursor_down() (prompt_toolkit.layout.UIControl method)

 	move_cursor_up() (prompt_toolkit.layout.UIControl method)

 	MultiColumnCompletionsMenu (class in prompt_toolkit.layout)

N

 	
 	named_registers (prompt_toolkit.key_binding.vi_state.ViState attribute)

 	NestedCompleter (class in prompt_toolkit.completion)

 	Never (class in prompt_toolkit.filters)

 	new_completion_from_position() (prompt_toolkit.completion.Completion method)

 	
 	new_eventloop_with_inputhook() (in module prompt_toolkit.eventloop.inputhook)

 	new_text_and_position() (prompt_toolkit.buffer.CompletionState method)

 	newline() (prompt_toolkit.buffer.Buffer method)

 	NumberedMargin (class in prompt_toolkit.layout)

O

 	
 	on_first_line (prompt_toolkit.document.Document property)

 	on_last_line (prompt_toolkit.document.Document property)

 	
 	open_in_editor() (prompt_toolkit.buffer.Buffer method)

 	original_document (prompt_toolkit.buffer.CompletionState attribute)

 	Output (class in prompt_toolkit.output)

P

 	
 	PasswordProcessor (class in prompt_toolkit.layout.processors)

 	paste_clipboard_data() (prompt_toolkit.buffer.Buffer method)

 	(prompt_toolkit.document.Document method)

 	patch_stdout() (in module prompt_toolkit.patch_stdout)

 	PathCompleter (class in prompt_toolkit.completion)

 	Percentage (class in prompt_toolkit.shortcuts.progress_bar.formatters)

 	Point (class in prompt_toolkit.data_structures)

 	preferred_height() (prompt_toolkit.layout.Container method)

 	(prompt_toolkit.layout.FloatContainer method)

 	(prompt_toolkit.layout.FormattedTextControl method)

 	(prompt_toolkit.layout.Window method)

 	preferred_width() (prompt_toolkit.layout.BufferControl method)

 	(prompt_toolkit.layout.Container method)

 	(prompt_toolkit.layout.FormattedTextControl method)

 	(prompt_toolkit.layout.Window method)

 	previous_control (prompt_toolkit.layout.Layout property)

 	print_formatted_text() (in module prompt_toolkit.renderer)

 	(in module prompt_toolkit.shortcuts)

 	print_text() (prompt_toolkit.application.Application method)

 	Priority (class in prompt_toolkit.styles)

 	process_keys() (prompt_toolkit.key_binding.key_processor.KeyProcessor method)

 	Processor (class in prompt_toolkit.layout.processors)

 	Progress (class in prompt_toolkit.shortcuts.progress_bar.formatters)

 	progress_dialog() (in module prompt_toolkit.shortcuts)

 	ProgressBar (class in prompt_toolkit.shortcuts)

 	prompt() (in module prompt_toolkit.shortcuts)

 	(prompt_toolkit.shortcuts.PromptSession method)

 	
 prompt_toolkit.application

 	module

 	
 prompt_toolkit.auto_suggest

 	module

 	
 prompt_toolkit.buffer

 	module

 	
 prompt_toolkit.clipboard

 	module

 	
 prompt_toolkit.clipboard.pyperclip

 	module

 	
 prompt_toolkit.completion

 	module

 	
 prompt_toolkit.document

 	module

 	
 prompt_toolkit.enums

 	module

 	
 prompt_toolkit.eventloop

 	module

 	
 prompt_toolkit.eventloop.inputhook

 	module

 	
 prompt_toolkit.eventloop.utils

 	module

 	
 prompt_toolkit.filters

 	module

 	
 prompt_toolkit.filters.app

 	module

 	
 prompt_toolkit.filters.utils

 	module

 	
 prompt_toolkit.formatted_text

 	module

 	
 prompt_toolkit.history

 	module

 	
 	
 prompt_toolkit.input

 	module

 	
 prompt_toolkit.input.ansi_escape_sequences

 	module

 	
 prompt_toolkit.input.vt100

 	module

 	
 prompt_toolkit.input.vt100_parser

 	module

 	
 prompt_toolkit.input.win32

 	module

 	
 prompt_toolkit.key_binding

 	module

 	
 prompt_toolkit.key_binding.defaults

 	module

 	
 prompt_toolkit.key_binding.key_processor

 	module

 	
 prompt_toolkit.key_binding.vi_state

 	module

 	
 prompt_toolkit.keys

 	module

 	
 prompt_toolkit.layout

 	module

 	
 prompt_toolkit.layout.processors

 	module

 	
 prompt_toolkit.layout.screen

 	module

 	
 prompt_toolkit.layout.utils

 	module

 	
 prompt_toolkit.lexers

 	module

 	
 prompt_toolkit.output

 	module

 	
 prompt_toolkit.output.vt100

 	module

 	
 prompt_toolkit.output.win32

 	module

 	
 prompt_toolkit.patch_stdout

 	module

 	
 prompt_toolkit.renderer

 	module

 	
 prompt_toolkit.selection

 	module

 	
 prompt_toolkit.shortcuts

 	module

 	
 prompt_toolkit.shortcuts.progress_bar.formatters

 	module

 	
 prompt_toolkit.styles

 	module

 	
 prompt_toolkit.validation

 	module

 	
 prompt_toolkit.widgets

 	module

 	PromptMargin (class in prompt_toolkit.layout)

 	PromptSession (class in prompt_toolkit.shortcuts)

 	pygments_token_to_classname() (in module prompt_toolkit.styles)

 	PygmentsLexer (class in prompt_toolkit.lexers)

 	PygmentsTokens (class in prompt_toolkit.formatted_text)

 	PyperclipClipboard (class in prompt_toolkit.clipboard.pyperclip)

Q

 	
 	quit_alternate_screen() (prompt_toolkit.output.Output method)

 	
 	quoted_insert (prompt_toolkit.application.Application attribute)

R

 	
 	RadioList (class in prompt_toolkit.widgets)

 	radiolist_dialog() (in module prompt_toolkit.shortcuts)

 	Rainbow (class in prompt_toolkit.shortcuts.progress_bar.formatters)

 	raw_mode (class in prompt_toolkit.input.vt100)

 	raw_mode() (prompt_toolkit.input.Input method)

 	read_keys() (prompt_toolkit.input.Input method)

 	(prompt_toolkit.input.vt100.Vt100Input method)

 	RegexSync (class in prompt_toolkit.lexers)

 	remove() (prompt_toolkit.key_binding.KeyBindings method)

 	remove_binding() (prompt_toolkit.key_binding.KeyBindings method)

 	render() (prompt_toolkit.renderer.Renderer method)

 	render_counter (prompt_toolkit.application.Application attribute)

 	Renderer (class in prompt_toolkit.renderer)

 	report_absolute_cursor_row() (prompt_toolkit.renderer.Renderer method)

 	request_absolute_cursor_position() (prompt_toolkit.renderer.Renderer method)

 	reset() (prompt_toolkit.application.Application method)

 	(prompt_toolkit.buffer.Buffer method)

 	(prompt_toolkit.key_binding.vi_state.ViState method)

 	(prompt_toolkit.layout.Container method)

 	
 	reset_attributes() (prompt_toolkit.output.Output method)

 	reset_cursor_key_mode() (prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	reset_cursor_shape() (prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	reshape_text() (in module prompt_toolkit.buffer)

 	responds_to_cpr (prompt_toolkit.output.Output property)

 	reverse (prompt_toolkit.styles.Attrs attribute)

 	ReverseSearchProcessor (class in prompt_toolkit.layout.processors)

 	rotate() (prompt_toolkit.clipboard.Clipboard method)

 	rows (prompt_toolkit.data_structures.Size attribute)

 	rows_above_layout (prompt_toolkit.renderer.Renderer property)

 	run() (prompt_toolkit.application.Application method)

 	run_async() (prompt_toolkit.application.Application method)

 	run_in_executor_with_context() (in module prompt_toolkit.eventloop)

 	(in module prompt_toolkit.eventloop.utils)

 	run_in_terminal() (in module prompt_toolkit.application)

 	run_system_command() (prompt_toolkit.application.Application method)

S

 	
 	save_to_undo_stack() (prompt_toolkit.buffer.Buffer method)

 	Screen (class in prompt_toolkit.layout.screen)

 	scroll_buffer_to_prompt() (prompt_toolkit.output.Output method)

 	ScrollablePane (class in prompt_toolkit.layout)

 	ScrollbarMargin (class in prompt_toolkit.layout)

 	ScrollOffsets (class in prompt_toolkit.layout)

 	SEARCH_BUFFER (in module prompt_toolkit.enums)

 	search_state (prompt_toolkit.layout.BufferControl property)

 	search_target_buffer_control (prompt_toolkit.layout.Layout property)

 	SearchBufferControl (class in prompt_toolkit.layout)

 	SearchToolbar (class in prompt_toolkit.widgets)

 	selection (prompt_toolkit.document.Document property)

 	selection_range() (prompt_toolkit.document.Document method)

 	selection_range_at_line() (prompt_toolkit.document.Document method)

 	selection_ranges() (prompt_toolkit.document.Document method)

 	SelectionState (class in prompt_toolkit.selection)

 	SelectionType (class in prompt_toolkit.selection)

 	send_sigint() (prompt_toolkit.key_binding.key_processor.KeyProcessor method)

 	set_app() (in module prompt_toolkit.application)

 	set_attributes() (prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	set_cursor_position() (prompt_toolkit.layout.screen.Screen method)

 	set_cursor_shape() (prompt_toolkit.output.Output method)

 	set_data() (prompt_toolkit.clipboard.Clipboard method)

 	set_document() (prompt_toolkit.buffer.Buffer method)

 	set_eventloop_with_inputhook() (in module prompt_toolkit.eventloop.inputhook)

 	set_menu_position() (prompt_toolkit.layout.screen.Screen method)

 	set_text() (prompt_toolkit.clipboard.Clipboard method)

 	set_title() (in module prompt_toolkit.shortcuts)

 	(prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	
 	Shadow (class in prompt_toolkit.widgets)

 	show_cursor (prompt_toolkit.layout.screen.Screen attribute)

 	show_cursor() (prompt_toolkit.output.Output method)

 	ShowArg (class in prompt_toolkit.layout.processors)

 	ShowLeadingWhiteSpaceProcessor (class in prompt_toolkit.layout.processors)

 	ShowTrailingWhiteSpaceProcessor (class in prompt_toolkit.layout.processors)

 	SimpleLexer (class in prompt_toolkit.lexers)

 	Size (class in prompt_toolkit.data_structures)

 	SpinningWheel (class in prompt_toolkit.shortcuts.progress_bar.formatters)

 	split_lines() (in module prompt_toolkit.formatted_text)

 	start_completion() (prompt_toolkit.buffer.Buffer method)

 	start_history_lines_completion() (prompt_toolkit.buffer.Buffer method)

 	start_of_paragraph() (prompt_toolkit.document.Document method)

 	start_selection() (prompt_toolkit.buffer.Buffer method)

 	StdoutProxy (class in prompt_toolkit.patch_stdout)

 	store_string() (prompt_toolkit.history.History method)

 	strike (prompt_toolkit.styles.Attrs attribute)

 	Style (class in prompt_toolkit.styles)

 	style_from_pygments_cls() (in module prompt_toolkit.styles)

 	style_from_pygments_dict() (in module prompt_toolkit.styles)

 	style_rules (prompt_toolkit.styles.BaseStyle property)

 	StyleTransformation (class in prompt_toolkit.styles)

 	Suggestion (class in prompt_toolkit.auto_suggest)

 	suspend_to_background() (prompt_toolkit.application.Application method)

 	swap_characters_before_cursor() (prompt_toolkit.buffer.Buffer method)

 	SwapLightAndDarkStyleTransformation (class in prompt_toolkit.styles)

 	SyncFromStart (class in prompt_toolkit.lexers)

 	SyntaxSync (class in prompt_toolkit.lexers)

 	SYSTEM_BUFFER (in module prompt_toolkit.enums)

 	SystemToolbar (class in prompt_toolkit.widgets)

T

 	
 	TabsProcessor (class in prompt_toolkit.layout.processors)

 	Template (class in prompt_toolkit.formatted_text)

 	Text (class in prompt_toolkit.shortcuts.progress_bar.formatters)

 	text (prompt_toolkit.document.Document property)

 	(prompt_toolkit.widgets.TextArea property)

 	text_inserted (prompt_toolkit.completion.CompleteEvent attribute)

 	TextArea (class in prompt_toolkit.widgets)

 	ThreadedAutoSuggest (class in prompt_toolkit.auto_suggest)

 	ThreadedCompleter (class in prompt_toolkit.completion)

 	ThreadedHistory (class in prompt_toolkit.history)

 	ThreadedValidator (class in prompt_toolkit.validation)

 	tilde_operator (prompt_toolkit.key_binding.vi_state.ViState attribute)

 	TimeElapsed (class in prompt_toolkit.shortcuts.progress_bar.formatters)

 	TimeLeft (class in prompt_toolkit.shortcuts.progress_bar.formatters)

 	timeoutlen (prompt_toolkit.application.Application attribute)

 	to_container (class in prompt_toolkit.layout)

 	
 	to_filter() (in module prompt_toolkit.filters)

 	(in module prompt_toolkit.filters.utils)

 	to_formatted_text() (in module prompt_toolkit.formatted_text)

 	to_plain_text() (in module prompt_toolkit.formatted_text)

 	to_window (class in prompt_toolkit.layout)

 	top_visible (prompt_toolkit.layout.WindowRenderInfo property)

 	transform_attrs() (prompt_toolkit.styles.StyleTransformation method)

 	(prompt_toolkit.styles.SwapLightAndDarkStyleTransformation method)

 	transform_current_line() (prompt_toolkit.buffer.Buffer method)

 	transform_lines() (prompt_toolkit.buffer.Buffer method)

 	transform_region() (prompt_toolkit.buffer.Buffer method)

 	Transformation (class in prompt_toolkit.layout.processors)

 	TransformationInput (class in prompt_toolkit.layout.processors)

 	translate_index_to_position() (prompt_toolkit.document.Document method)

 	translate_row_col_to_index() (prompt_toolkit.document.Document method)

 	ttimeoutlen (prompt_toolkit.application.Application attribute)

 	typeahead_hash() (prompt_toolkit.input.Input method)

U

 	
 	UIContent (class in prompt_toolkit.layout)

 	UIControl (class in prompt_toolkit.layout)

 	
 	underline (prompt_toolkit.styles.Attrs attribute)

 	unindent() (in module prompt_toolkit.buffer)

 	update_parents_relations() (prompt_toolkit.layout.Layout method)

V

 	
 	validate() (prompt_toolkit.buffer.Buffer method)

 	(prompt_toolkit.validation.Validator method)

 	validate_and_handle() (prompt_toolkit.buffer.Buffer method)

 	validate_async() (prompt_toolkit.validation.ThreadedValidator method)

 	(prompt_toolkit.validation.Validator method)

 	ValidationError

 	Validator (class in prompt_toolkit.validation)

 	vertical_scroll_percentage (prompt_toolkit.layout.WindowRenderInfo property)

 	
 	VerticalAlign (class in prompt_toolkit.layout)

 	VerticalLine (class in prompt_toolkit.widgets)

 	vi_state (prompt_toolkit.application.Application attribute)

 	ViState (class in prompt_toolkit.key_binding.vi_state)

 	VSplit (class in prompt_toolkit.layout)

 	Vt100_Output (class in prompt_toolkit.output.vt100)

 	Vt100Input (class in prompt_toolkit.input.vt100)

 	Vt100Parser (class in prompt_toolkit.input.vt100_parser)

W

 	
 	wait_for_cpr_responses() (prompt_toolkit.renderer.Renderer method)

 	waiting_for_cpr (prompt_toolkit.renderer.Renderer property)

 	waiting_for_digraph (prompt_toolkit.key_binding.vi_state.ViState attribute)

 	walk (class in prompt_toolkit.layout)

 	walk() (prompt_toolkit.layout.Layout method)

 	walk_through_modal_area() (prompt_toolkit.layout.Layout method)

 	width (prompt_toolkit.layout.screen.Screen attribute)

 	Window (class in prompt_toolkit.layout)

 	WindowAlign (class in prompt_toolkit.layout)

 	WindowRenderInfo (class in prompt_toolkit.layout)

 	
 	WordCompleter (class in prompt_toolkit.completion)

 	write() (prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	write_raw() (prompt_toolkit.output.Output method)

 	(prompt_toolkit.output.vt100.Vt100_Output method)

 	write_to_screen() (prompt_toolkit.layout.Container method)

 	(prompt_toolkit.layout.HSplit method)

 	(prompt_toolkit.layout.ScrollablePane method)

 	(prompt_toolkit.layout.VSplit method)

 	(prompt_toolkit.layout.Window method)

X

 	
 	x (prompt_toolkit.data_structures.Point attribute)

Y

 	
 	y (prompt_toolkit.data_structures.Point attribute)

 	yank_last_arg() (prompt_toolkit.buffer.Buffer method)

 	
 	yank_nth_arg() (prompt_toolkit.buffer.Buffer method)

 	yes_no_dialog() (in module prompt_toolkit.shortcuts)

Z

 	
 	zero() (prompt_toolkit.layout.Dimension class method)

 	
 	zero_width_escapes (prompt_toolkit.layout.screen.Screen attribute)

_images/hello-world-prompt.png
prompt_toolkit — -bash — 43x5
[$ python prompt.py
Give me some input: Hi there!
You said: Hi there!

$

_images/html-completion.png
® Terminal

_images/confirm.png
——I| Yes/No dialog example |—

Do you want to confirm?

Yes N < No

_images/custom-key-bindings.png
$ python custom-key-bindings-tmp.py
] 341/800 eta [00:04]

_images/messagebox.png
—— | Example dialog window |——

Do you want to continue?
Press ENTER to quit.

Ok

_images/multiline-input.png
[multiline input> this is some
input which
consists of

multiple lines.[]

_images/html-input.png
@ [prompt_toolkit — -bash — 43x5
'$ python html-input.py
[Enter HTML: <p class="hello">world</p>
You said: <p class="hello">world</p>

$

_images/inputbox.png
—— | Input dialog example |——

Please type your name:

Jonathan|]

< (0] ¢ > < Cancel >

_images/number-validator.png
. o Terminal

Give a number: hello

This input contains non-numeric characters

_images/ptpython-2.png
(] Terminal

('Hello world'.title
swapcase

translate

upper
zfill
[F4] Emacs 1189/1189 [F3] History [F2] Menu - CPython 3.6.1

_images/colored-prompt.png
. prompt_toolkit — python colored-prompt.py — 43x5
[$ python colored-prompt.py
john@lOEalhosSE : /user/john# ||

_images/colored-title-and-label.png
$ python colored-title-and-label.py

Downloading

some file: 31.5% [===>] 252/800 eta [00:05]

_images/bottom-toolbar.png
. o Terminal

_images/button.png
| Button dialog example |

Are you sure?

Yes N <

_images/colorful-completions.png
[Type a color: red

_images/ptpython-history-help.png
* Template(' ', autoescape=True)
* nja2.Template('<p>({ a }}</p>", autoe
* t.render(a='<p>')
* (‘a', 'b') + History Help
ORI r
* if True: This interface is meant to select multiple lines from the
print('te history and execute them together.
* if True:
print('te|Typical usage
* 324324 ---
* 32432
* 324324 1. Move the '‘cursor up'' in the history pane, until the
* 23324 cursor is on the first desired line.
* enunerate(ran|2. Hold down the ''space bar'', or press it multiple
* import dateti times. Each time it will select one line and move to
* datetime.date| the next one. Each selected Lline will appear on the
* n= right side.
* n.isoformat() 3. When all the required lines are displayed on the right]
* '%s' % None side, press "'Enter' . This will go back to the Python|
* fron collecti| REPL and show these lines as the current input. They
* defaultdict(l| can still be edited from there.
* a=
* a[4][5] Key bindings
* import signal| --- o=
* signal.defaul v
* signal.signal
* assert False

234324

nav.xhtml

 Table of Contents

 		
 Python Prompt Toolkit 3.0

 		
 Gallery

 		
 Ptpython, a Python REPL

 		
 Pyvim, a Vim clone

 		
 Pymux, a terminal multiplexer (like tmux) in Python

 		
 Getting started

 		
 Installation

 		
 Several use cases: prompts versus full screen terminal applications

 		
 A simple prompt

 		
 Learning prompt_toolkit

 		
 Upgrading

 		
 Upgrading to prompt_toolkit 2.0

 		
 Why all these breaking changes?

 		
 Some new features

 		
 Upgrading

 		
 Upgrading to prompt_toolkit 3.0

 		
 Detecting the prompt_toolkit version

 		
 Fixing calls to get_event_loop

 		
 Running on top of asyncio

 		
 Changes to the dialog functions

 		
 Printing (and using) formatted text

 		
 Printing plain text

 		
 Formatted text

 		
 HTML

 		
 ANSI

 		
 (style, text) tuples

 		
 Pygments (Token, text) tuples

 		
 to_formatted_text

 		
 Asking for input (prompts)

 		
 Hello world

 		
 The PromptSession object

 		
 Syntax highlighting

 		
 Colors

 		
 Using a Pygments style

 		
 Coloring the prompt itself

 		
 Autocompletion

 		
 Nested completion

 		
 A custom completer

 		
 Styling individual completions

 		
 Fuzzy completion

 		
 Complete while typing

 		
 Asynchronous completion

 		
 Input validation

 		
 Validator from a callable

 		
 History

 		
 Auto suggestion

 		
 Adding a bottom toolbar

 		
 Adding a right prompt

 		
 Vi input mode

 		
 Adding custom key bindings

 		
 Enable key bindings according to a condition

 		
 Dynamically switch between Emacs and Vi mode

 		
 Using control-space for completion

 		
 Other prompt options

 		
 Multiline input

 		
 Passing a default

 		
 Mouse support

 		
 Line wrapping

 		
 Password input

 		
 Cursor shapes

 		
 Prompt in an asyncio application

 		
 Reading keys from stdin, one key at a time, but without a prompt

 		
 Dialogs

 		
 Message box

 		
 Input box

 		
 Yes/No confirmation dialog

 		
 Button dialog

 		
 Radio list dialog

 		
 Checkbox list dialog

 		
 Styling of dialogs

 		
 Styling reference sheet

 		
 Example

 		
 Progress bars

 		
 Simple progress bar

 		
 Multiple parallel tasks

 		
 Adding a title and label

 		
 Formatting the progress bar

 		
 Adding key bindings and toolbar

 		
 Building full screen applications

 		
 A simple application

 		
 I/O objects

 		
 The layout

 		
 A layered layout architecture

 		
 Containers and controls

 		
 Focusing windows

 		
 Key bindings

 		
 Global key bindings

 		
 Modal containers

 		
 More about the Window class

 		
 More about buffers and BufferControl

 		
 Input processors

 		
 Tutorials

 		
 Tutorial: Build an SQLite REPL

 		
 Read User Input

 		
 Loop The REPL

 		
 Syntax Highlighting

 		
 Auto-completion

 		
 Styling the menus

 		
 Hook up Sqlite

 		
 Advanced topics

 		
 More about key bindings

 		
 List of special keys

 		
 Binding alt+something, option+something or meta+something

 		
 Wildcards

 		
 Attaching a filter (condition)

 		
 ConditionalKeyBindings: Disabling a set of key bindings

 		
 Merging key bindings

 		
 Eager

 		
 Asyncio coroutines

 		
 Timeouts

 		
 Recording macros

 		
 Creating new Vi text objects and operators

 		
 Handling SIGINT

 		
 Processing .inputrc

 		
 More about styling

 		
 Style strings

 		
 Class names

 		
 Dot notation in class names

 		
 Multiple classes in a style sheet

 		
 Evaluation order of rules in a style sheet

 		
 Using a dictionary as a style sheet

 		
 Loading a style from Pygments

 		
 Merging styles together

 		
 Color depths

 		
 Style transformations

 		
 Filters

 		
 An example

 		
 Built-in filters

 		
 Combining filters

 		
 to_filter

 		
 The rendering flow

 		
 Running on top of the asyncio event loop

 		
 Unit testing

 		
 PosixPipeInput and DummyOutput

 		
 Using an AppSession

 		
 Pytest fixtures

 		
 Type checking

 		
 Input hooks

 		
 Architecture

 		
 The rendering pipeline

 		
 Waiting for user input

 		
 Reading the user input

 		
 Processing the key presses

 		
 The key handlers

 		
 Rendering the user interface

 		
 Reference

 		
 Application

 		
 AppSession

 		
 Application

 		
 DummyApplication

 		
 create_app_session()

 		
 get_app()

 		
 get_app_or_none()

 		
 in_terminal()

 		
 run_in_terminal()

 		
 set_app()

 		
 Formatted text

 		
 ANSI

 		
 FormattedText

 		
 HTML

 		
 PygmentsTokens

 		
 Template

 		
 fragment_list_len()

 		
 fragment_list_to_text()

 		
 fragment_list_width()

 		
 is_formatted_text()

 		
 merge_formatted_text()

 		
 split_lines()

 		
 to_formatted_text()

 		
 to_plain_text()

 		
 Buffer

 		
 Buffer

 		
 CompletionState

 		
 EditReadOnlyBuffer

 		
 indent()

 		
 reshape_text()

 		
 unindent()

 		
 Selection

 		
 SelectionState

 		
 SelectionType

 		
 Clipboard

 		
 Clipboard

 		
 ClipboardData

 		
 DummyClipboard

 		
 DynamicClipboard

 		
 InMemoryClipboard

 		
 PyperclipClipboard

 		
 Auto completion

 		
 CompleteEvent

 		
 Completer

 		
 Completion

 		
 ConditionalCompleter

 		
 DeduplicateCompleter

 		
 DummyCompleter

 		
 DynamicCompleter

 		
 ExecutableCompleter

 		
 FuzzyCompleter

 		
 FuzzyWordCompleter

 		
 NestedCompleter

 		
 PathCompleter

 		
 ThreadedCompleter

 		
 WordCompleter

 		
 get_common_complete_suffix()

 		
 merge_completers()

 		
 Document

 		
 Document

 		
 Enums

 		
 DEFAULT_BUFFER

 		
 SEARCH_BUFFER

 		
 SYSTEM_BUFFER

 		
 History

 		
 DummyHistory

 		
 FileHistory

 		
 History

 		
 InMemoryHistory

 		
 ThreadedHistory

 		
 Keys

 		
 Keys

 		
 Style

 		
 AdjustBrightnessStyleTransformation

 		
 Attrs

 		
 BaseStyle

 		
 ConditionalStyleTransformation

 		
 DummyStyle

 		
 DummyStyleTransformation

 		
 DynamicStyle

 		
 DynamicStyleTransformation

 		
 Priority

 		
 Style

 		
 StyleTransformation

 		
 SwapLightAndDarkStyleTransformation

 		
 merge_style_transformations()

 		
 merge_styles()

 		
 pygments_token_to_classname()

 		
 style_from_pygments_cls()

 		
 style_from_pygments_dict()

 		
 Shortcuts

 		
 CompleteStyle

 		
 ProgressBar

 		
 PromptSession

 		
 button_dialog()

 		
 clear()

 		
 clear_title()

 		
 confirm()

 		
 create_confirm_session()

 		
 input_dialog()

 		
 message_dialog()

 		
 print_formatted_text()

 		
 progress_dialog()

 		
 prompt()

 		
 radiolist_dialog()

 		
 set_title()

 		
 yes_no_dialog()

 		
 Bar

 		
 Formatter

 		
 IterationsPerSecond

 		
 Label

 		
 Percentage

 		
 Progress

 		
 Rainbow

 		
 SpinningWheel

 		
 Text

 		
 TimeElapsed

 		
 TimeLeft

 		
 create_default_formatters()

 		
 Validation

 		
 ConditionalValidator

 		
 DummyValidator

 		
 DynamicValidator

 		
 ThreadedValidator

 		
 ValidationError

 		
 Validator

 		
 Auto suggestion

 		
 AutoSuggest

 		
 AutoSuggestFromHistory

 		
 ConditionalAutoSuggest

 		
 DummyAutoSuggest

 		
 DynamicAutoSuggest

 		
 Suggestion

 		
 ThreadedAutoSuggest

 		
 Renderer

 		
 Renderer

 		
 print_formatted_text()

 		
 Lexers

 		
 DynamicLexer

 		
 Lexer

 		
 PygmentsLexer

 		
 RegexSync

 		
 SimpleLexer

 		
 SyncFromStart

 		
 SyntaxSync

 		
 Layout

 		
 Command line layout definitions

 		
 The layout class itself

 		
 Containers

 		
 Controls

 		
 Other

 		
 Widgets

 		
 Box

 		
 Button

 		
 Checkbox

 		
 Frame

 		
 HorizontalLine

 		
 Label

 		
 MenuContainer

 		
 RadioList

 		
 SearchToolbar

 		
 Shadow

 		
 SystemToolbar

 		
 TextArea

 		
 VerticalLine

 		
 Filters

 		
 Always

 		
 Condition

 		
 Filter

 		
 HasFocus()

 		
 InEditingMode()

 		
 Never

 		
 has_focus()

 		
 in_editing_mode()

 		
 is_true()

 		
 to_filter()

 		
 Filter

 		
 Condition

 		
 is_true()

 		
 to_filter()

 		
 has_focus()

 		
 in_editing_mode()

 		
 Key binding

 		
 ConditionalKeyBindings

 		
 DynamicKeyBindings

 		
 KeyBindings

 		
 KeyBindingsBase

 		
 merge_key_bindings()

 		
 load_key_bindings()

 		
 ViState

 		
 KeyPress

 		
 KeyPressEvent

 		
 KeyProcessor

 		
 Eventloop

 		
 call_soon_threadsafe()

 		
 get_traceback_from_context()

 		
 run_in_executor_with_context()

 		
 InputHookContext

 		
 InputHookSelector

 		
 new_eventloop_with_inputhook()

 		
 set_eventloop_with_inputhook()

 		
 call_soon_threadsafe()

 		
 get_traceback_from_context()

 		
 run_in_executor_with_context()

 		
 Input

 		
 DummyInput

 		
 Input

 		
 create_input()

 		
 create_pipe_input()

 		
 Vt100Input

 		
 cooked_mode

 		
 raw_mode

 		
 Vt100Parser

 		
 Output

 		
 ColorDepth

 		
 DummyOutput

 		
 Output

 		
 create_output()

 		
 Vt100_Output

 		
 Data structures

 		
 WindowRenderInfo

 		
 Point

 		
 Size

 		
 Patch stdout

 		
 patch_stdout

 		
 StdoutProxy

 		
 patch_stdout()

 		
 Related projects

_images/apt-get.png
$ python styled-apt-get-install.py

Installing: [64.4% | .

_images/pymux.png
- ~/git/pymux - Pymux 4 -ox
fgit/pynue 1] connands/connands.py__Pyvin 0

comnands . py
10 3.9%] Tasks: 130; 1 running 264 @cnd('swap-pane’, options="'(-D|-U)"
2 [1 2.0%) Load average: 0.05 .08 0.09 |265 def swap_pane(pymux, cli, variables)
Men[[[11111]111553/3029MB] Uptime: 17:1 266 pymux.arrangement.get_active