prompt;oolkit Documentation
Release 3.0.23

Jonathan Slenders

Nov 26, 2021

1 Getting started

2 Thanks to:

3 Table of contents
3.1 Gallery
3.2 Getting started

3.3 Upgrading

3.4 Printing (and using) formatted text
3.5 Asking for input (prompts)
36 Dialogs L.
3.7 Progress bars
3.8 Building full screen applications

3.9 Tutorials

3.10 Advanced topics

3.11 Reference

4 Indices and tables

Python Module Index

Index

CONTENTS

prompt;oolkit Documentation, Release3.0.23

Warning: Notice that this is the prompt_toolkit 3.0 documentation. It is mostly compatible with the 2.0 branch.
The difference is that prompt_toolkit 3.0 requires at least Python 3.6. On the plus side, it uses asyncio natively
(rather than it’s own event loop), and we have type annotations everywhere.

prompt_toolkit is a library for building powerful interactive command line and terminal applications in Python.

It can be a very advanced pure Python replacement for GNU readline, but it can also be used for building full screen
applications.

® @ Terminal

swapcase

translate

upper
zfill
[F4] Emacs 1189/1189 [F3] History [F2] Menu - CPython 3.6.1

Some features:
» Syntax highlighting of the input while typing. (For instance, with a Pygments lexer.)
* Multi-line input editing.
* Advanced code completion.
* Selecting text for copy/paste. (Both Emacs and Vi style.)
* Mouse support for cursor positioning and scrolling.
* Auto suggestions. (Like fish shell.)
* No global state.
Like readline:
* Both Emacs and Vi key bindings.
* Reverse and forward incremental search.
* Works well with Unicode double width characters. (Chinese input.)
Works everywhere:

* Pure Python. Runs on all Python versions starting at Python 3.6. (Python 2.6 - 3.x is supported in prompt_toolkit
2.0; not 3.0).

* Runs on Linux, OS X, OpenBSD and Windows systems.
 Lightweight, the only dependencies are Pygments and wcwidth.

» No assumptions about I/O are made. Every prompt_toolkit application should also run in a telnet/ssh server or
an asyncio process.

CONTENTS 1

http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html
http://fishshell.com/
https://docs.python.org/3/library/asyncio.html

prompt;oolkit Documentation, Release3.0.23

Have a look at the gallery to get an idea of what is possible.

2 CONTENTS

CHAPTER
ONE

GETTING STARTED

Go to getting started and build your first prompt.

prompt;oolkit Documentation, Release3.0.23

4 Chapter 1. Getting started

CHAPTER
TWO

THANKS TO:

A special thanks to all the contributors for making prompt_toolkit possible.

Also, a special thanks to the Pygments and wcwidth libraries.

https://github.com/prompt-toolkit/python-prompt-toolkit/graphs/contributors
http://pygments.org/
https://github.com/jquast/wcwidth

prompt;oolkit Documentation, Release3.0.23

6 Chapter 2. Thanks to:

CHAPTER
THREE

TABLE OF CONTENTS

3.1 Gallery

Showcase, demonstrating the possibilities of prompt_toolkit.

3.1.1 Ptpython, a Python REPL

The prompt:

Python REPL (ptpython)
>>> 1f True:
print('Hello world'.centerD

caEitaIize |

count
decode
encode
endswith

[F4] Vi (INSERT) 38 History ’aste e Menu - CPython 2.7.6

The configuration menu of ptpython.

Python REPL (ptpython)

In [1]: import signal
...: signal.default_int_handler() Input mode vi
Paste mode off
Complete while typing on
History search of f
Mouse support on
Confirm on exit on
Input validation on
Auto suggestion of f
Accept input on enter 2
D
Completions multi-column
Visualisation of the prompt. ('s>>' or 'In [1]:') >MI-<
Show signature on
Meta+Enter] Execute Arrows] MNavigate [Enter] Hide menu

Vi (INSERT) 3 64 mode Menu - CPython 2.7.6

The history page with its help. (This is a full-screen layout.)

prompt;oolkit Documentation, Release3.0.23

* ¥ ¥ ¥ ¥ ¥

*

* 0% % ¥ X % ¥ ¥ ¥ ¥ ¥ ¥ N O ¥ ¥ O ¥ ¥

jinja2.Template("'’

. autoescape True}

t = jinja2. Template(‘cp>{{ a }}</p>', autoe
t. render(a- <p=>")
('a', 'b') + History Help
(1 1b|)+ D
if True: This interface is meant to select multiple lines from the

print('te history and execute them together.
if True:

print('te| Typical usage
324324 [--eeemeemooo-
32432
324324 1. Move the "“‘cursor up ~ in the history pane, until the
23324 cursor is on the first desired line.
enumerate(ran/ 2. Hold down the "“space bar' ", or press it multiple
import dateti times. Each time it will select one line and move to
datetime.date the next one. Each selected line will appear on the
n=_ right side.
n.isoformat() 3. When all the required lines are displayed on the right
'%s"' % None side, press "“Enter’ . This will go back to the Python
from collecti REPL and show these lines as the current input. They
defaultdict(l can still be edited from there.
a=
a[4][5] Key bindings
import signal ------------
signal.defaul W
signal.signal
assert False

234324

(NAV)

Chapter 3. Table of contents

prompt.oolkit Documentation, Release3.0.23

3.1.2 Pyvim, a Vim clone

Terminal

editor.py
5
6 files_to_edit = ['filel.txt', 'file2.py']
T e = Editor(files_to_edit)
B e.run{) # Runs the event loop, starts interaction.

__future__ import unicode_literals

prompt_toolkit.buffer import Buffer, AcceptAction
prompt_toolkit.contrib.shortcuts import create_eventloop
prompt_toolkit.enums import SEARCH_BUFFER
prompt_toolkit.filters import Always, Condition
prompt_toolkit.history import FileHistory

prompt_toolkit.key_binding.wi_state import InputMode

.commands.completer import create_command_completer
.commands.handler import handle_command
.commands.preview import CommandPreviewer
.editor_buffer import EditorBuffer

~enuns import COMMAMND_BUFFER

.help import HELP_TEXT

.key_bindings import create_key_bindings

.layout import EditorlLayout

.reporting import report

from .window_arrangement import WindowArrangement

2 import pygments
import os

_all__ = ¢
; ‘Editor',
)

class Editor{object):

The main class. Containing the whole editor.

init .pyc commands

comple
editor.py {
redit completion.py |

prompt_toolkit.interface import CommandlLineInterface, AbortAc

/ cun?letiun.- ¢ editor.

return tokens, lambda i: 1

class ShowTabsProcessor(Processor):
Render tabs as spaces or make them visible.

def __imit__{self, editor):
self.editor = editor

def run{self, cli, document, tokens):
tabstop = self.editor.tabstop

Create separator for tabs
dots = '\u2588'
separator = dots * tabstop

Remember the poszitions where we replace the tab
positions = set()

place tab by separatar.

p
from .editer_buffer import EditorBuffer

all

.style import generate_built_in_styles, get_editor_style_by_n 'ﬁzndnwnrrangement',

)

class HSplit{list):
""" Horizontal split. {This is a higher lewel split than
prompt_toolkit.layout.HSplit.)

3 class WSplit(list):
4 """ Horizontal split.

7 class Window{object):

Editor window: a window can show any open buffer.
editor.pyc editor buffer.py editor buffer.pyc >

window arrangement.py (11,1} - 2

3.1. Gallery

prompt,oolkit Documentation, Release3.0.23

3.1.3 Pymux, a terminal multiplexer (like tmux) in Python

- ~/git/pymux - Pymux

[~/oit/pymux [1][commands/commands. 0
command y
1 [3.9%] Tasks: ; running 264 @cmd('swap-pane', options='(-D|-U)")
2 [l 2.0%] Load average: 0.05 0.08 0.09 |265 def swap_pane(pymux, cli, variables):
Mem[||111]11]1]]]553/3029MB] Uptime: 266 pymux.arrangement.get_active_window(cli).rotate(wit
Swp[0/4092MB] 267

268
269 @cmd('kill-pane')
270 def kill_pane(pymux, cli, variables):

root 20 @ 127M 54220 14752 S 1.3 1.7 3:22.25 |271 pane = pymux.arrangement.get_active_pane(cli)
24012 jonathan 20 © 2683M 13800 9552 S 0.7 0.4 0:00.05 |272 pymux.kill_pane(pane)
23915 jonathan 20 0 5504 1764 1312 R 0.7 0.1 0:01.05 §273
2511 jonathan 20 0@ 209M 21548 11216 S 0.7 0.7 2:48.03 |274
23627 jonathan 20 ©® 259M 58284 23232 S 0.0 1.9 0:03.22 275 @cmd('kill-window')
2121 jonathan 20 © 126M 10616 7808 S 0.0 0.3 0:02.22 |276 def kill_window(pymux, cli, variables):
2211 jonathan 20 @ 178M 15292 16924 S 0.0 0.5 0:05.87 |277 " Kill all panes in the current window. "
M‘US for pane in pymux.arrangement.get_active_window(cli
g D 279 pymux.kill_pane(pane)
280
jonathan@jonathan-VirtualBox ~/git/pymux 281
S s 282 @cmd('suspend-client')
examples pymux README.rst 283 def suspend_client(pymux, cli, variables):
LICENSE pymux.egg-info setup.py 284 connection = pymux.get_connection_for_cli{cli)
prompt-toolkit-render-input.log README.2.rst TODO 285
286 if connection:
jonathan@jonathan-VirtualBox ~/git/pymux 287 connection.suspend_client_to_background()
5 AC 288
289
jonathan@jonathan-VirtualBox ~/git/pymux 290 @cmd('clock-mode')
291 def clock_mode(pymux, cli, variables):
292 pane = pymux.arrangement.get_active_pane(cli)
293 if pane:

0] B:htop* 1:ssh- 00:39 03-Jan-16

3.2 Getting started

3.2.1 Installation

pip install prompt_toolkit

For Conda, do:

conda install -c https://conda.anaconda.org/conda-forge prompt_toolkit

3.2.2 Several use cases: prompts versus full screen terminal applications

prompt_toolkit was in the first place meant to be a replacement for readline. However, when it became more mature,
we realised that all the components for full screen applications are there and prompt_toolkit is very capable of handling
many use situations. Pyvim and pymux are examples of full screen applications.

10 Chapter 3. Table of contents

http://github.com/prompt-toolkit/pyvim
http://github.com/prompt-toolkit/pymux

prompt;oolkit Documentation, Release3.0.23

Terminal
editor.py
5 return tokens, lambda i: i
6 files_to_edit = ['filel.txt', 'file2.py']
T e = Editor(files_to_edit)
B e.run{) # Runs the event loop, starts interaction. class ShowTabsProcessor(Processor):

from __future__ import unicode_literals Render tabs as spaces or make them visible.

12 from prompt_toolkit.buffer import Buffer, AcceptAction 539 def __imit__{self, editor):
1% from prompt_toolkit.comtrib.shortcuts import create_eventloop 548 self.editor = editor
from prompt_toolkit.enums import SEARCH_BUFFER 541
15 from prompt_toolkit.filters import Always, Condition 542 def run({self, cli, document, tokens):
& from prompt_toolkit.history import FileHistory 543 tabstop self.editor.tabstop
7 from prompt_toolkit.interface import CommandlLineInterface, AbortAc|=
tion 545 # Create separator for tabs.
18 from prompt_toolkit.key_binding.wi_state import InputMode 546 u2588
18 547 separator = dots * tabstop
28 from .commands.completer import create_command_completer S48
21 from .commands.handler import handle_command the positions whe we replace tab.
27 from .commands.preview import CommandPreviewer 558 set()
23 from .editor_buffer import EditorBuffer
24 from .enums import COMMAND_BUFFER tab by separator.
25 from .help import HELP_TEXT ut.py
26 from .key_bindings import create_key_bindings 11 from .editor_buffer import EditorBuffer
27 from .layout import EditorLayout 12
28 from .reporting import report 13 __all__ {
29 from .style import generate_built_in_styles, get_editor_style_by_n| 1 'WindowArrangement'
ane 15 }
o from .window_arrangement import WindowArrangement 16

o

import pygments 1B class HSplit{list):
33 import os 19 """ Horizontal split. {This iz a higher lewvel split than

) P

26 prompt_toolkit.layout . HSplit.) """
_all__ = 21
"Editor’, 22
b 23 class wSplit{list):
2 """ Horizeontal split. """
A £
A class Editor{object): 26
1 27 class Window{object):
. The main class. Containing the whole editor. 28
3 29 Editor window: a window can show any open buffer.
. .pyc commands/ & UMY, completion.pyc editor.py editor.pyc editor buffer.py editor buffer.pyc >
editor.py - 1% T window arrangement.py (11,1} - ¥

tedit completion.py |

Basically, at the core, prompt_toolkit has a layout engine, that supports horizontal and vertical splits as well as floats,
where each “window” can display a user control. The API for user controls is simple yet powerful.

When prompt_toolkit is used as a readline replacement, (to simply read some input from the user), it uses a rather
simple built-in layout. One that displays the default input buffer and the prompt, a float for the autocompletions and a
toolbar for input validation which is hidden by default.

For full screen applications, usually we build a custom layout ourselves.

Further, there is a very flexible key binding system that can be programmed for all the needs of full screen applications.

3.2.3 A simple prompt

The following snippet is the most simple example, it uses the prompt () function to asks the user for input and returns
the text. Just like (raw_)input.

from prompt_toolkit import prompt

text = prompt('Give me some input: ')
print('You said: %s' % text)

3.2. Getting started 11

prompt;oolkit Documentation, Release3.0.23

3.2.4 Learning prompt _toolkit

In order to learn and understand prompt_toolkit, it is best to go through the all sections in the order below. Also don’t
forget to have a look at all the examples in the repository.

e First, learn how to print text. This is important, because it covers how to use “formatted text”, which is something
you’ll use whenever you want to use colors anywhere.

* Secondly, go through the asking for input section. This is useful for almost any use case, even for full screen
applications. It covers autocompletions, syntax highlighting, key bindings, and so on.

* Then, learn about Dialogs, which is easy and fun.

¢ Finally, learn about full screen applications and read through the advanced topics.

3.3 Upgrading

3.3.1 Upgrading to prompt_toolkit 2.0

Prompt_toolkit 2.0 is not compatible with 1.0, however you probably want to upgrade your applications. This page
explains why we have these differences and how to upgrade.

If you experience some difficulties or you feel that some information is missing from this page, don’t hesitate to open
a GitHub issue for help.

Why all these breaking changes?

After more and more custom prompt_toolkit applications were developed, it became clear that prompt_toolkit 1.0 was
not flexible enough for certain use cases. Mostly, the development of full screen applications was not really natural.
All the important components, like the rendering, key bindings, input and output handling were present, but the API
was in the first place designed for simple command line prompts. This was mostly notably in the following two places:

* First, there was the focus which was always pointing to a Buffer (or text input widget), but in full screen
applications there are other widgets, like menus and buttons which can be focused.

* And secondly, it was impossible to make reusable UI components. All the key bindings for the entire applications
were stored together in one KeyBindings object, and similar, all Buffer objects were stored together in one
dictionary. This didn’t work well. You want reusable components to define their own key bindings and everything.
It’s the idea of encapsulation.

For simple prompts, the changes wouldn’t be that invasive, but given that there would be some, I took the opportunity
to fix a couple of other things. For instance:

* In prompt_toolkit 1.0, we translated \r into \n during the input processing. This was not a good idea, because
some people wanted to handle these keys individually. This makes sense if you keep in mind that they correspond
to Control-M and Control-J. However, we couldn’t fix this without breaking everyone’s enter key, which happens
to be the most important key in prompts.

Given that we were going to break compatibility anyway, we changed a couple of other important things that effect
both simple prompt applications and full screen applications. These are the most important:

* We no longer depend on Pygments for styling. While we like Pygments, it was not flexible enough to provide all
the styling options that we need, and the Pygments tokens were not ideal for styling anything besides tokenized
text.

12 Chapter 3. Table of contents

https://github.com/prompt-toolkit/python-prompt-toolkit/tree/master/examples

prompt;oolkit Documentation, Release3.0.23

Instead we created something similar to CSS. All UI components can attach classnames to themselves, as well
as define an inline style. The final style is then computed by combining the inline styles, the classnames and the
style sheet.

There are still adaptors available for using Pygments lexers as well as for Pygments styles.

» The way that key bindings were defined was too complex. KeyBindingsManager was too complex and no longer
exists. Every set of key bindings is now a KeyBindings object and multiple of these can be merged together at
any time. The runtime performance remains the same, but it’s now easier for users.

* The separation between the CommandLineInterface and Application class was confusing and in the end,
didn’t really had an advantage. These two are now merged together in one Application class.

* We no longer pass around the active CommandLineInterface. This was one of the most annoying things. Key
bindings need it in order to change anything and filters need it in order to evaluate their state. It was pretty
annoying, especially because there was usually only one application active at a time. So, Application became
a TaskLocal. That is like a global variable, but scoped in the current coroutine or context. The way this works
is still not 100% correct, but good enough for the projects that need it (like Pymux), and hopefully Python will
get support for this in the future thanks to PEP521, PEP550 or PEP555.

All of these changes have been tested for many months, and I can say with confidence that prompt_toolkit 2.0 is a better
prompt_toolkit.

Some new features

Apart from the breaking changes above, there are also some exciting new features.

* We now support vt100 escape codes for Windows consoles on Windows 10. This means much faster rendering,
and full color support.

* We have a concept of formatted text. This is an object that evaluates to styled text. Every input that expects some
text, like the message in a prompt, or the text in a toolbar, can take any kind of formatted text as input. This
means you can pass in a plain string, but also a list of (style, text) tuples (similar to a Pygments tokenized string),
or an HTML object. This simplifies many APIs.

e New utilities were added. We now have function for printing formatted text and an experimental module for
displaying progress bars.

* Autocompletion, input validation, and auto suggestion can now either be asynchronous or synchronous.
By default they are synchronous, but by wrapping them in ThreadedCompleter, ThreadedValidator or
ThreadedAutoSuggest, they will become asynchronous by running in a background thread.

Further, if the autocompletion code runs in a background thread, we will show the completions as soon as they
arrive. This means that the autocompletion algorithm could for instance first yield the most trivial completions
and then take time to produce the completions that take more time.

Upgrading

More guidelines on how to upgrade will follow.

3.3. Upgrading 13

prompt;oolkit Documentation, Release3.0.23

AbortAction has been removed

Prompt_toolkit 1.0 had an argument abort_action for both the Application class as well as for the prompt function.
This has been removed. The recommended way to handle this now is by capturing KeyboardInterrupt and EOFError
manually.

Calling create_eventloop usually not required anymore

Prompt_toolkit 2.0 will automatically create the appropriate event loop when it’s needed for the first time. There is no
need to create one and pass it around. If you want to run an application on top of asyncio (without using an executor),
it still needs to be activated by calling use_asyncio_event_loop() at the beginning.

Pygments styles and tokens

prompt_toolkit 2.0 no longer depends on Pygments, but that definitely doesn’t mean that you can’t use any Pygments
functionality anymore. The only difference is that Pygments stuff needs to be wrapped in an adaptor to make it com-
patible with the native prompt_toolkit objects.

* Forinstance, if you have alist of (pygments.Token, text) tuples for formatting, then this needs to be wrapped
in a PygmentsTokens object. This is an adaptor that turns it into prompt_toolkit “formatted text”. Feel free to
keep using this.

* Pygments lexers need to be wrapped in a PygmentsLexer. This will convert the list of Pygments tokens into
prompt_toolkit formatted text.

e If you have a Pygments style, then this needs to be converted as well. A Pygments style class
can be converted in a prompt_toolkit Style with the style_from_pygments_cls() function (which
used to be called style_from_pygments). A Pygments style dictionary can be converted using
style_from_pygments_dict().

Multiple styles can be merged together using merge_styles().

Wordcompleter

WordCompleter ~was moved from prompt_toolkit.contrib.completers.base.WordCompleter to
prompt_toolkit.completion.word_completer.WordCompleter.

Asynchronous autocompletion

By default, prompt_toolkit 2.0 completion is now synchronous. If you still want asynchronous auto completion (which
is often good thing), then you have to wrap the completer in a ThreadedCompleter.

14 Chapter 3. Table of contents

http://pygments.org/

prompt;oolkit Documentation, Release3.0.23

Filters

We don’t distiguish anymore between CLIFilter and SimpleFilter, because the application object is no longer passed
around. This means that all filters are a Filter from now on.

All filters have been turned into functions. For instance, IsDone became is_done and HasCompletions became
has_completions.

This was done because almost all classes were called without any arguments in the __iniz__ causing additional braces
everywhere. This means that HasCompletions() has to be replaced by has_completions (without parenthesis).

The few filters that took arguments as input, became functions, but still have to be called with the given arguments.

For new filters, it is recommended to use the @ Condition decorator, rather then inheriting from Filter. For instance:

from prompt_toolkit.filters import Condition

@Condition
def my_filter(Q);
return True # Or False

3.3.2 Upgrading to prompt_toolkit 3.0

There are two major changes in 3.0 to be aware of:

* First, prompt_toolkit uses the asyncio event loop natively, rather then using its own implementations of event
loops. This means that all coroutines are now asyncio coroutines, and all Futures are asyncio futures. Asyn-
chronous generators became real asynchronous generators as well.

* Prompt_toolkit uses type annotations (almost) everywhere. This should not break any code, but its very helpful
in many ways.

There are some minor breaking changes:
* The dialogs API had to change (see below).

Detecting the prompt_toolkit version

Detecting whether version 3 is being used can be done as follows:

from prompt_toolkit import __version__ as ptk_version

PTK3 = ptk_version.startswith('3.")

Fixing calls to get_event loop

Every usage of get_event_loop has to be fixed. An easy way to do this is by changing the imports like this:

if PTK3:
from asyncio import get_event_loop
else:
from prompt_toolkit.eventloop import get_event_loop

3.3. Upgrading 15

prompt;oolkit Documentation, Release3.0.23

Notice that for prompt_toolkit 2.0, get_event_loop returns a prompt_toolkit EventLoop object. This is not an
asyncio eventloop, but the API is similar.

There are some changes to the eventloop API:

version 2.0 version 3.0 (asyncio)
loop.run_in_executor(callback) loop.run_in_executor(None, callback)
loop.call_from_executor(callback) | loop.call_soon_threadsafe(callback)

Running on top of asyncio

For 2.0, you had tell prompt_toolkit to run on top of the asyncio event loop. Now it’s the default. So, you can simply
remove the following two lines:

from prompt_toolkit.eventloop.defaults import use_asyncio_event_loop
use_asyncio_event_loop()

There is a few little breaking changes though. The following:

For 2.0
result = await PromptSession().prompt('Say something:

]

, async_=True)

has to be changed into:

For 3.0
result = await PromptSession().prompt_async('Say something: ')

Further, it’s impossible to call the prompz() function within an asyncio application (within a coroutine), because it will
try to run the event loop again. In that case, always use prompt_async().

Changes to the dialog functions

The original way of using dialog boxes looked like this:

from prompt_toolkit.shortcuts import input_dialog

result = input_dialog(title='..."', text='...")

Now, the dialog functions return a prompt_toolkit Application object. You have to call either its run or run_async
method to display the dialog. The async_ parameter has been removed everywhere.

if PTK3:
result = input_dialog(title='...'"', text='...").run(Q)
else:
result = input_dialog(title='...", text='...")
Or
if PTK3:
result = await input_dialog(title='...'"', text='...').run_async()
else:
result = await input_dialog(title='...'"', text='...', async_=True)

16 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

3.4 Printing (and using) formatted text

Prompt_toolkit ships with a print_formatted_text () function that’s meant to be (as much as possible) compatible
with the built-in print function, but on top of that, also supports colors and formatting.

On Linux systems, this will output VT100 escape sequences, while on Windows it will use Win32 API calls or VT100
sequences, depending on what is available.

Note: This page is also useful if you’d like to learn how to use formatting in other places, like in a prompt or a toolbar.
Just like print_formatted_text () takes any kind of “formatted text” as input, prompts and toolbars also accept
“formatted text”.

3.4.1 Printing plain text

The print function can be imported as follows:

from prompt_toolkit import print_formatted_text

print_formatted_text('Hello world")

You can replace the built in print function as follows, if you want to.

from prompt_toolkit import print_formatted_text as print

print('Hello world")

Note: If you're using Python 2, make sure to add from __future__ import print_function. Otherwise, it will
not be possible to import a function named print.

3.4.2 Formatted text

There are several ways to display colors:
* By creating an HTIML object.
* By creating an ANST object that contains ANSI escape sequences.
* By creating a list of (style, text) tuples.
* By creating a list of (pygments.Token, text) tuples, and wrapping it in PygmentsTokens.

An instance of any of these four kinds of objects is called “formatted text”. There are various places in prompt toolkit,
where we accept not just plain text (as a string), but also formatted text.

3.4. Printing (and using) formatted text 17

prompt;oolkit Documentation, Release3.0.23

HTML

HTML can be used to indicate that a string contains HTML-like formatting. It recognizes the basic tags for bold, italic
and underline: , <i> and <u>.

from prompt_toolkit import print_formatted_text, HTML

print_formatted_text (HTML('This is bold"))
print_formatted_text (HTML('<i>This is italic</i>"))
print_formatted_text (HTML('<u>This is underlined</u>"))

Further, it’s possible to use tags for foreground colors:

Colors from the ANSI palette.
print_formatted_text (HTML('<ansired>This is red</ansired>'"))
print_formatted_text (HTML('<ansigreen>This is green</ansigreen>'))

Named colors (256 color palette, or true color, depending on the output).
print_formatted_text (HTML('<skyblue>This is sky blue</skyblue>"))
print_formatted_text (HTML('<seagreen>This is sea green</seagreen>'))
print_formatted_text (HTML('<violet>This is violet</violet>"))

Both foreground and background colors can also be specified setting the fg and bg attributes of any HTML tag:

Colors from the ANSI palette.
print_formatted_text (HTML('<aaa fg="ansiwhite" bg="ansigreen">White on green</aaa>'))

Underneath, all HTML tags are mapped to classes from a stylesheet, so you can assign a style for a custom tag.

from prompt_toolkit import print_formatted_text, HTML
from prompt_toolkit.styles import Style

style = Style.from_dict({
'aaa': '"#££f0066',
'bbb': '#44££f00 italic',
b

print_formatted_text (HTML('<aaa>Hello</aaa> <bbb>world</bbb>!"), style=style)

ANSI

Some people like to use the VT 100 ANSI escape sequences to generate output. Natively, this is however only supported
on VT100 terminals, but prompt_toolkit can parse these, and map them to formatted text instances. This means that
they will work on Windows as well. The ANST class takes care of that.

from prompt_toolkit import print_formatted_text, ANSI

print_formatted_text (ANSI('\x1b[31mhello \x1b[32mworld'))

Keep in mind that even on a Linux VT100 terminal, the final output produced by prompt_toolkit, is not necessarily
exactly the same. Depending on the color depth, it is possible that colors are mapped to different colors, and unknown
tags will be removed.

18 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

(style, text) tuples

Internally, both HTHML and ANSI objects are mapped to a list of (style, text) tuples. It is however also possible
to create such a list manually with FormattedText class. This is a little more verbose, but it’s probably the most
powerful way of expressing formatted text.

from prompt_toolkit import print_formatted_text
from prompt_toolkit.formatted_text import FormattedText

text = FormattedText([
('#££0066', 'Hello'),
('l’] l)’
('#44££00 italic', 'World"),
D

print_formatted_text(text)

Similar to the HTML example, it is also possible to use class names, and separate the styling in a style sheet.

from prompt_toolkit import print_formatted_text
from prompt_toolkit.formatted_text import FormattedText
from prompt_toolkit.styles import Style

The text.

text = FormattedText([
('class:aaa', 'Hello'),
(ll’ | l),

('class:bbb', 'World'),
D

The style sheet.
style = Style.from_dict({
'aaa': "#ff0066',
'bbb': "#44ff00 italic',
b

print_formatted_text(text, style=style)

Pygments (Token, text) tuples

When you have a list of Pygments (Token, text) tuples, then these can be printed by wrapping them in a
PygmentsTokens object.

from pygments.token import Token
from prompt_toolkit import print_formatted_text
from prompt_toolkit.formatted_text import PygmentsTokens

text = [
(Token.Keyword, 'print'),
(Token.Punctuation, '('),

(Token.Literal.String.Double, '"'),
(Token.Literal.String.Double, 'hello"),
(Token.Literal.String.Double, '"'"),

(continues on next page)

3.4. Printing (and using) formatted text 19

http://pygments.org/

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

(Token.Punctuation, ')'),
(Token.Text, '\n'),
]

print_formatted_text (PygmentsTokens(text))

Similarly, it is also possible to print the output of a Pygments lexer:

import pygments
from pygments.token import Token
from pygments.lexers.python import PythonLexer

from prompt_toolkit.formatted_text import PygmentsTokens
from prompt_toolkit import print_formatted_text

Printing the output of a pygments lexer.
tokens = list(pygments.lex('print("Hello")', lexer=PythonLexer()))
print_formatted_text(PygmentsTokens(tokens))

Prompt_toolkit ships with a default colorscheme which styles it just like Pygments would do, but if you’d like to change
the colors, keep in mind that Pygments tokens map to classnames like this:

pygments.Token prompt_toolkit classname
* Token.Keyword e "class:pygments.keyword"
* Token.Punctuation e "class:pygments.punctuation"
e Token.Literal.String.Double e "class:pygments.literal.string.
e Token.Text double"
e Token e "class:pygments.text"
e "class:pygments"

A classname like pygments.literal.string.double is actually decomposed in the following four classnames:
pygments, pygments.literal, pygments.literal.string and pygments.literal.string.double. The fi-
nal style is computed by combining the style for these four classnames. So, changing the style from these Pygments
tokens can be done as follows:

from prompt_toolkit.styles import Style

style = Style.from_dict({
'pygments.keyword': 'underline',
'pygments.literal.string': 'bg:#00ff00 #ffffff',

b

print_formatted_text(PygmentsTokens(tokens), style=style)

20 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

to_formatted_text

A useful function to know about is to_formatted_text (). This ensures that the given input is valid formatted text.
While doing so, an additional style can be applied as well.

from prompt_toolkit.formatted_text import to_formatted_text, HTML
from prompt_toolkit import print_formatted_text

html = HTML('<aaa>Hello</aaa> <bbb>world</bbb>!")
text = to_formatted_text(html, style='class:my_html bg:#00ff00 italic')

print_formatted_text(text)

3.5 Asking for input (prompts)

This page is about building prompts. Pieces of code that we can embed in a program for asking the user for input. Even
if you want to use prompt_toolkit for building full screen terminal applications, it is probably still a good idea to read
this first, before heading to the building full screen applications page.

In this page, we will cover autocompletion, syntax highlighting, key bindings, and so on.

3.5.1 Hello world

The following snippet is the most simple example, it uses the prompt () function to ask the user for input and returns
the text. Just like (raw_) input.

from prompt_toolkit import prompt

text = prompt('Give me some input: ')
print('You said: " % text)

@ prompt_toolkit — -bash — 43x5
python prompt.py
Give me some input: Hi there!
You said: Hi there!

$

What we get here is a simple prompt that supports the Emacs key bindings like readline, but further nothing special.
However, prompt () has a lot of configuration options. In the following sections, we will discover all these parameters.

3.5. Asking for input (prompts) 21

prompt;oolkit Documentation, Release3.0.23

3.5.2 The PromptSession object

Instead of calling the prompt () function, it’s also possible to create a PromptSession instance followed by calling
its prompt () method for every input call. This creates a kind of an input session.

from prompt_toolkit import PromptSession

Create prompt object.
session = PromptSession()

Do multiple input calls.
textl = session.prompt()
text2 = session.prompt()

This has mainly two advantages:
* The input history will be kept between consecutive prompt () calls.

e The PromptSession() instance and its prompt () method take about the same arguments, like all the options
described below (highlighting, completion, etc...). So if you want to ask for multiple inputs, but each input call
needs about the same arguments, they can be passed to the PromptSession () instance as well, and they can be
overridden by passing values to the prompt () method.

3.5.3 Syntax highlighting

Adding syntax highlighting is as simple as adding a lexer. All of the Pygments lexers can be used after wrapping them
in a PygmentsLexer. It is also possible to create a custom lexer by implementing the Lexer abstract base class.

from pygments.lexers.html import HtmlLexer
from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.lexers import PygmentsLexer
text = prompt('Enter HTML: '
print('You said: ' % text)

, lexer=PygmentsLexer (HtmlLexer))

prompt_toolkit — -bash — 43x5

python html-input.py
Enter HTML: <p class >world</p>
You said: <p class="hello">world</p>

$

The default Pygments colorscheme is included as part of the default style in prompt_toolkit. If you want to use another
Pygments style along with the lexer, you can do the following:

22 Chapter 3. Table of contents

http://pygments.org/

prompt;oolkit Documentation, Release3.0.23

from pygments.lexers.html import HtmlLexer

from pygments.styles import get_style_by_name

from prompt_toolkit.shortcuts import prompt

from prompt_toolkit.lexers import PygmentsLexer

from prompt_toolkit.styles.pygments import style_from_pygments_cls

style = style_from_pygments_cls(get_style_by_name('monokai'))

text = prompt('Enter HTML: ', lexer=PygmentsLexer(HtmlLexer), style=style,
include_default_pygments_style=False)
print('You said: ' % text)

We pass include_default_pygments_style=False, because otherwise, both styles will be merged, possibly giv-
ing slightly different colors in the outcome for cases where where our custom Pygments style doesn’t specify a color.

3.5.4 Colors

The colors for syntax highlighting are defined by a Style instance. By default, a neutral built-in style is used, but any
style instance can be passed to the prompt () function. A simple way to create a style, is by using the from_dict ()
function:

from pygments.lexers.html import HtmlLexer
from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.styles import Style

from prompt_toolkit.lexers import PygmentsLexer

our_style = Style.from_dict({

'pygments.comment ' : '#888888 bold',
'pygments.keyword"' : '"#££88ff bold',
D)
text = prompt('Enter HTML: ', lexer=PygmentsLexer(HtmlLexer),

style=our_style)

The style dictionary is very similar to the Pygments styles dictionary, with a few differences:
* The roman, sans, mono and border options are ignored.
 The style has a few additions: blink, noblink, reverse and noreverse.

* Colors can be in the #££0000 format, but they can be one of the built-in ANSI color names as well. In that case,
they map directly to the 16 color palette of the terminal.

Read more about styling.

Using a Pygments style

All Pygments style classes can be used as well, when they are wrapped through style_from_pygments_cls().

Suppose we’d like to use a Pygments style, for instance pygments.styles.tango.TangoStyle, that is possible like
this:

Creating a custom style could be done like this:

3.5. Asking for input (prompts) 23

prompt,oolkit Documentation, Release3.0.23

from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.styles import Style, style_from_pygments_cls, merge_styles
from prompt_toolkit.lexers import PygmentsLexer

from pygments.styles.tango import TangoStyle
from pygments.lexers.html import HtmlLexer

our_style = merge_styles([
style_from_pygments_cls(TangoStyle),
Style. from_dict({
'pygments.comment': '#888888 bold',
'pygments.keyword': '#ff88ff bold',
b
D

text = prompt('Enter HTML: ', lexer=PygmentsLexer (HtmlLexer),
style=our_style)

Coloring the prompt itself

It is possible to add some colors to the prompt itself. For this, we need to build some formatted text. One way of doing
this is by creating a list of style/text tuples. In the following example, we use class names to refer to the style.

from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.styles import Style

style = Style.from_dict({
User input (default text).

" '#££0066",
Prompt.
'username': '#884444"',
'at': '#00aa00"',
'colon': '#0000aa’,
"pound’ : '#002200"',
'host': '"#00ffff bg:#444400',
'path': 'ansicyan underline',
b
message = [
('class:username', 'john'),
('class:at', '‘a'y,
('class:host', 'localhost'),
('class:colon',),
('class:path', '/user/john'),
('class:pound’,),

]

text = prompt(message, style=style)

24 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

® ® prompt_toolkit — python colored-prompt.py — 43x5
$ python colored-prompt.py
john@localhost : /user/john#

The message can be any kind of formatted text, as discussed /ere. It can also be a callable that returns some formatted
text.

By default, colors are taken from the 256 color palette. If you want to have 24bit true color, this is possible by adding
the color_depth=ColorDepth.TRUE_COLOR option to the prompt () function.

from prompt_toolkit.output import ColorDepth

text = prompt(message, style=style, color_depth=ColorDepth.TRUE_COLOR)

3.5.5 Autocompletion

Autocompletion can be added by passing a completer parameter. This should be an instance of the Completer
abstract base class. WordCompleter is an example of a completer that implements that interface.

from prompt_toolkit import prompt
from prompt_toolkit.completion import WordCompleter

html_completer = WordCompleter(['<html>", '<body>', '<head>', '<title>'])
text = prompt('Enter HTML: ', completer=html_completer)
print('You said: ' % text)

WordCompleter is a simple completer that completes the last word before the cursor with any of the given words.

3.5. Asking for input (prompts) 25

prompt.oolkit Documentation, Release3.0.23

®@ 00 Terminal
Enter HTML: <body>
<html>

<head>
<title>

Note: Note that in prompt_toolkit 2.0, the auto completion became synchronous. This means that if it takes a long
time to compute the completions, that this will block the event loop and the input processing.

For heavy completion algorithms, it is recommended to wrap the completer in a ThreadedCompleter in order to run
it in a background thread.

Nested completion

Sometimes you have a command line interface where the completion depends on the previous words from the input.
Examples are the CLIs from routers and switches. A simple WordCompleter is not enough in that case. We want to
to be able to define completions at multiple hierarchical levels. NestedCompleter solves this issue:

from prompt_toolkit import prompt
from prompt_toolkit.completion import NestedCompleter

completer = NestedCompleter.from nested_dict({
'show': {
'version': None,
'clock': None,
'ip': {
'interface': {'brief'}
}
1,

'exit': None,

(continues on next page)

26 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

b
text = prompt('# ', completer=completer)
print('You said: ' % text)

Whenever there is a None value in the dictionary, it means that there is no further nested completion at that point. When
all values of a dictionary would be None, it can also be replaced with a set.

A custom completer

For more complex examples, it makes sense to create a custom completer. For instance:

from prompt_toolkit import prompt
from prompt_toolkit.completion import Completer, Completion

class MyCustomCompleter(Completer):
def get_completions(self, document, complete_event):
yield Completion('completion', start_position=0)

text = prompt('> ', completer=MyCustomCompleter())

A Completer class has to implement a generator named get_completions () that takes a Document and yields the
current Completion instances. Each completion contains a portion of text, and a position.

The position is used for fixing text before the cursor. Pressing the tab key could for instance turn parts of the input from
lowercase to uppercase. This makes sense for a case insensitive completer. Or in case of a fuzzy completion, it could
fix typos. When start_position is something negative, this amount of characters will be deleted and replaced.

Styling individual completions

Each completion can provide a custom style, which is used when it is rendered in the completion menu or toolbar. This
is possible by passing a style to each Completion instance.

from prompt_toolkit.completion import Completer, Completion

class MyCustomCompleter(Completer):
def get_completions(self, document, complete_event):
Display this completion, black on yellow.
yield Completion('completionl', start_position=0,
style="bg:ansiyellow fg:ansiblack')

Underline completion.
yield Completion('completion2', start_position=0,
style="underline')

Specify class name, which will be looked up in the style sheet.
yield Completion('completion3', start_position=0,
style="class:special-completion')

The “colorful-prompts.py” example uses completion styling:

3.5. Asking for input (prompts) 27

prompt;oolkit Documentation, Release3.0.23

F

=
[1
-

Type a color: redf|
red

Finally, it is possible to pass formatted text for the display attribute of a CompIletion. This provides all the freedom
you need to display the text in any possible way. It can also be combined with the style attribute. For instance:

from prompt_toolkit.completion import Completer, Completion
from prompt_toolkit.formatted_text import HTML

class MyCustomCompleter(Completer):
def get_completions(self, document, complete_event):
yield Completion(
'completionl', start_position=0,
display=HTML('completion<ansired>1</ansired>"),
style="bg:ansiyellow"')

Fuzzy completion

If one possible completions is “django_migrations”, a fuzzy completer would allow you to get this by typing “djm”
only, a subset of characters for this string.

Prompt_toolkit ships with a FuzzyCompleter and FuzzyWordCompleter class. These provide the means for doing
this kind of “fuzzy completion”. The first one can take any completer instance and wrap it so that it becomes a fuzzy
completer. The second one behaves like a WordCompleter wrapped into a FuzzyCompleter.

28 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

Complete while typing

Autcompletions can be generated automatically while typing or when the user presses the tab key. This can be config-
ured with the complete_while_typing option:

text = prompt('Enter HTML: ', completer=my_completer,
complete_while_typing=True)

Notice that this setting is incompatible with the enable_history_search option. The reason for this is that the up
and down key bindings would conflict otherwise. So, make sure to disable history search for this.

Asynchronous completion

When generating the completions takes a lot of time, it’s better to do this in a background thread. This is possible by
wrapping the completer in a ThreadedCompleter, but also by passing the complete_in_thread=True argument.

text = prompt('> ', completer=MyCustomCompleter(), complete_in_thread=True)

3.5.6 Input validation
A prompt can have a validator attached. This is some code that will check whether the given input is acceptable and it
will only return it if that’s the case. Otherwise it will show an error message and move the cursor to a given position.

A validator should implements the Validator abstract base class. This requires only one method, named validate
that takes a Document as input and raises ValidationError when the validation fails.

from prompt_toolkit.validation import Validator, ValidationError
from prompt_toolkit import prompt

class NumberValidator(Validator):
def validate(self, document):
text = document.text

if text and not text.isdigit(Q):
i=0

Get index of first non numeric character.
We want to move the cursor here.
for i, ¢ in enumerate(text):
if not c.isdigit():
break

raise ValidationError(message='This input contains non-numeric characters',
cursor_position=i)

number = int(prompt('Give a number: ', validator=NumberValidator()))
print('You said: ' % number)

3.5. Asking for input (prompts) 29

prompt;oolkit Documentation, Release3.0.23

O] Terminal

Give a number: hellof|

This input contains non-numeric characters

By default, the input is validated in real-time while the user is typing, but prompt_toolkit can also validate after the
user presses the enter key:

prompt('Give a number: ', validator=NumberValidator(),
validate_while_typing=False)

If the input validation contains some heavy CPU intensive code, but you don’t want to block the event loop, then it’s
recommended to wrap the validator class in a ThreadedValidator.

Validator from a callable

Instead of implementing the Validator abstract base class, it is also possible to start from a simple function and
use the from_callable() classmethod. This is easier and sufficient for probably 90% of the validators. It looks as
follows:

from prompt_toolkit.validation import Validator
from prompt_toolkit import prompt

def is_number(text):
return text.isdigit(Q)

validator = Validator.from_callable(
is_number,
error_message='This input contains non-numeric characters',
move_cursor_to_end=True)

number = int(prompt('Give a number: ', validator=validator))
print('You said: ' % number)

We define a function that takes a string, and tells whether it’s valid input or not by returning a boolean.
from_callable() turns that into a Validator instance. Notice that setting the cursor position is not possible this
way.

30 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

3.5.7 History

A History object keeps track of all the previously entered strings, so that the up-arrow can reveal previously entered
items.

The recommended way is to use a PromptSession, which uses an InMemoryHistory for the entire session by default.
The following example has a history out of the box:

from prompt_toolkit import PromptSession
session = PromptSession()

while True:
session.prompt()

To persist a history to disk, use a FileHistory instead of the default InMemoryHistory. This history object can be
passed either to a PromptSession or to the prompt () function. For instance:

from prompt_toolkit import PromptSession
from prompt_toolkit.history import FileHistory

session = PromptSessionChistory=FileHistory('~/.myhistory'))

while True:
session.prompt()

3.5.8 Auto suggestion

Auto suggestion is a way to propose some input completions to the user like the fish shell.

Usually, the input is compared to the history and when there is another entry starting with the given text, the completion
will be shown as gray text behind the current input. Pressing the right arrow — or c-e will insert this suggestion, alt-f
will insert the first word of the suggestion.

Note: When suggestions are based on the history, don’t forget to share one History object between consecutive
prompt () calls. Using a PromptSession does this for you.

Example:

from prompt_toolkit import PromptSession
from prompt_toolkit.history import InMemoryHistory
from prompt_toolkit.auto_suggest import AutoSuggestFromHistory

session = PromptSession()

while True:
text = session.prompt('> ', auto_suggest=AutoSuggestFromHistory())
print('You said: ' % text)

3.5. Asking for input (prompts) 31

http://fishshell.com/

prompt;oolkit Documentation, Release3.0.23

_

Py

Terminal

y

A suggestion does not have to come from the history. Any implementation of the AutoSuggest abstract base class can
be passed as an argument.

3.5.9 Adding a bottom toolbar

Adding a bottom toolbar is as easy as passing a bottom_toolbar argument to prompt (). This argument be either
plain text, formatted text or a callable that returns plain or formatted text.

When a function is given, it will be called every time the prompt is rendered, so the bottom toolbar can be used to
display dynamic information.

The toolbar is always erased when the prompt returns. Here we have an example of a callable that returns an HTML
object. By default, the toolbar has the reversed style, which is why we are setting the background instead of the
foreground.

from prompt_toolkit import prompt
from prompt_toolkit.formatted_text import HTML

def bottom_toolbar():

return HTML('This is a <style bg="ansired">Toolbar</style>!")
text = prompt('> ', bottom_toolbar=bottom_toolbar)
print('You said: ' % text)

32 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

Y

® @ Terminal

> some inputf]

This is a Toolbar!

Similar, we could use a list of style/text tuples.

from prompt_toolkit import prompt
from prompt_toolkit.styles import Style

def bottom_toolbar():
return [('class:bottom-toolbar', ' This is a toolbar. ')]

style = Style.from_dict({

'bottom-toolbar': '#ffffff bg:#333333',
b
text = prompt('> ', bottom_toolbar=bottom_toolbar, style=style)
print('You said: ' % text)

The default class name is bottom-toolbar and that will also be used to fill the background of the toolbar.

3.5.10 Adding a right prompt
The prompt () function has out of the box support for right prompts as well. People familiar to ZSH could recognise
this as the RPROMPT option.

So, similar to adding a bottom toolbar, we can pass an rprompt argument. This can be either plain text, formatted text
or a callable which returns either.

from prompt_toolkit import prompt
from prompt_toolkit.styles import Style

example_style = Style.from_dict({
'rprompt': 'bg:#ff0066 #ffffff',
b

def get_rprompt():
return '<rprompt>'

answer = prompt('> ', rprompt=get_rprompt, style=example_style)

3.5. Asking for input (prompts) 33

prompt;oolkit Documentation, Release3.0.23

python3 rprompt.py
> some inputf] <rprompt>

The get_rprompt function can return any kind of formatted text such as HTHL. it is also possible to pass text directly
to the rprompt argument of the prompt () function. It does not have to be a callable.

3.5.11 Vi input mode

Prompt-toolkit supports both Emacs and Vi key bindings, similar to Readline. The prompt () function will use Emacs
bindings by default. This is done because on most operating systems, also the Bash shell uses Emacs bindings by
default, and that is more intuitive. If however, Vi binding are required, just pass vi_mode=True.

from prompt_toolkit import prompt

prompt('> ', vi_mode=True)

3.5.12 Adding custom key bindings

By default, every prompt already has a set of key bindings which implements the usual Vi or Emacs behaviour. We
can extend this by passing another KeyBindings instance to the key_bindings argument of the prompt () function
or the PromptSession class.

An example of a prompt that prints "hello world' when Control-T is pressed.

from prompt_toolkit import prompt
from prompt_toolkit.application import run_in_terminal
from prompt_toolkit.key_binding import KeyBindings

bindings = KeyBindings()

@bindings.add('c-t")
def _(event):
" Say 'hello' when "c-t° is pressed.

n

(continues on next page)

34 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

def print_hello(Q):
print('hello world")
run_in_terminal (print_hello)

@bindings.add('c-x")

def _(event):
" Exit when “c-x" is pressed.
event.app.exit()

text = prompt('> ', key_bindings=bindings)
print('You said: " % text)

Note that we use run_in_terminal () for the first key binding. This ensures that the output of the print-statement
and the prompt don’t mix up. If the key bindings doesn’t print anything, then it can be handled directly without nesting
functions.

Enable key bindings according to a condition
Often, some key bindings can be enabled or disabled according to a certain condition. For instance, the Emacs and Vi
bindings will never be active at the same time, but it is possible to switch between Emacs and Vi bindings at run time.

In order to enable a key binding according to a certain condition, we have to pass it a Filter, usually a Condition
instance. (Read more about filters.)

from prompt_toolkit import prompt
from prompt_toolkit.filters import Condition
from prompt_toolkit.key_binding import KeyBindings

bindings = KeyBindings()

@Condition

def is_active():
" Only activate key binding on the second half of each minute.
return datetime.datetime.now() .second > 30

@bindings.add('c-t', filter=is_active)
def _(event):

...

pass

prompt('> ', key_bindings=bindings)

3.5. Asking for input (prompts) 35

prompt;oolkit Documentation, Release3.0.23

Dynamically switch between Emacs and Vi mode

The Application has an editing_mode attribute. We can change the key bindings by changing this attribute from
EditingMode.VI to EditingMode.EMACS

from prompt_toolkit import prompt

from prompt_toolkit.application.current import get_app
from prompt_toolkit.enums import EditingMode

from prompt_toolkit.key_binding import KeyBindings

def runQ):
Create a set of key bindings.
bindings = KeyBindings()

Add an additional key binding for toggling this flag.
@bindings.add('f4")
def _(event):
" Toggle between Emacs and Vi mode.
app = event.app

if app.editing_mode == EditingMode.VI:
app.editing_mode = EditingMode.EMACS
else:
app.editing mode = EditingMode.VI

Add a toolbar at the bottom to display the current input mode.
def bottom_toolbar():
" Display the current input mode.
text = 'Vi' if get_app().editing_mode == EditingMode.VI else 'Emacs'
return [
('class:toolbar', ' [F4] %s ' % text)

1
prompt('> ', key_bindings=bindings, bottom_toolbar=bottom_toolbar)

run()

Read more about key bindings . ..

Using control-space for completion

An popular short cut that people sometimes use it to use control-space for opening the autocompletion menu instead
of the tab key. This can be done with the following key binding.

kb = KeyBindings()

@kb.add('c-space')
def _(event):
" Initialize autocompletion, or select the next completion.
buff = event.app.current_buffer
if buff.complete_state:
buff.complete_next()

(continues on next page)

36 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

else:
buff.start_completion(select_first=False)

3.5.13 Other prompt options
Multiline input

Reading multiline input is as easy as passing the multiline=True parameter.

from prompt_toolkit import prompt

prompt('> ', multiline=True)

A side effect of this is that the enter key will now insert a newline instead of accepting and returning the input. The
user will now have to press Meta+Enter in order to accept the input. (Or Escape followed by Enter.)

It is possible to specify a continuation prompt. This works by passing a prompt_continuation callable to prompt ().
This function is supposed to return formatted text, or a list of (style, text) tuples. The width of the returned text
should not exceed the given width. (The width of the prompt margin is defined by the prompt.)

from prompt_toolkit import prompt

def prompt_continuation(width, line_number, is_soft_wrap):
return '.' * width
Or: return [(", '.' * width)]
prompt('multiline input> ', multiline=True,
prompt_continuation=prompt_continuation)

multiline input> this is some
ccccc-c-ccccccc..inputWh-i.Ch

Ceieeteaeseesss.CONSiSts of
veveiieerrenen...multiple lines.j}

3.5. Asking for input (prompts) 37

prompt;oolkit Documentation, Release3.0.23

Passing a default

A default value can be given:

from prompt_toolkit import prompt
import getpass

prompt('What is your name: ', default='%s' % getpass.getuser())

Mouse support

There is limited mouse support for positioning the cursor, for scrolling (in case of large multiline inputs) and for clicking
in the autocompletion menu.

Enabling can be done by passing the mouse_support=True option.

from prompt_toolkit import prompt

prompt('What is your name: ', mouse_support=True)

Line wrapping

Line wrapping is enabled by default. This is what most people are used to and this is what GNU Readline does. When
it is disabled, the input string will scroll horizontally.

from prompt_toolkit import prompt

prompt('What is your name: ', wrap_lines=False)

Password input

When the is_password=True flag has been given, the input is replaced by asterisks (* characters).

from prompt_toolkit import prompt

prompt('Enter password: ', is_password=True)

3.5.14 Prompt in an asyncio application

Note: New in prompt_toolkit 3.0. (In prompt_toolkit 2.0 this was possible using a work-around).

For asyncio applications, it’s very important to never block the eventloop. However, prompt () is blocking, and calling
this would freeze the whole application. Asyncio actually won’t even allow us to run that function within a coroutine.

The answer is to call prompt_async () instead of prompt (). The async variation returns a coroutines and is awaitable.

38 Chapter 3. Table of contents

https://docs.python.org/3/library/asyncio.html

prompt;oolkit Documentation, Release3.0.23

from prompt_toolkit import PromptSession
from prompt_toolkit.patch_stdout import patch_stdout

async def my_coroutine():
session = PromptSession()
while True:
with patch_stdout(Q):
result = await session.prompt_async('Say something: ')
print('You said: ' % result)

The patch_stdout () context manager is optional, but it’s recommended, because other coroutines could print to
stdout. This ensures that other output won’t destroy the prompt.

3.5.15 Reading keys from stdin, one key at a time, but without a prompt

Suppose that you want to use prompt_toolkit to read the keys from stdin, one key at a time, but not render a prompt to
the output, that is also possible:

import asyncio

from prompt_toolkit.input import create_input
from prompt_toolkit.keys import Keys

async def main() -> None:
done = asyncio.Event()
input = create_input()

def keys_ready(Q):
for key_press in input.read_keys():
print (key_press)

if key_press.key == Keys.ControlC:
done.set()

with input.raw_mode():
with input.attach(keys_ready):
await done.wait()

if __name__ == "__main

asyncio.run(main())

The above snippet will print the KeyPress object whenever a key is pressed. This is also cross platform, and should
work on Windows.

3.5. Asking for input (prompts) 39

prompt,oolkit Documentation, Release3.0.23

3.6 Dialogs

Prompt_toolkit ships with a high level API for displaying dialogs, similar to the Whiptail program, but in pure Python.

3.6.1 Message box

Use the message_dialog () function to display a simple message box. For instance:

from prompt_toolkit.shortcuts import message_dialog

message_dialog(
title="Example dialog window',
text="'Do you want to continue?\nPress ENTER to quit.').run()

——I| Example dialog window |——

Do you want to continue?
Press ENTER to quit.

Ok

3.6.2 Input box

The input_dialog() function can display an input box. It will return the user input as a string.

from prompt_toolkit.shortcuts import input_dialog

text = input_dialog(
title="Input dialog example',
text="'Please type your name:"').run()

40 Chapter 3. Table of contents

prompt.oolkit Documentation, Release3.0.23

——| Input dialog example

Please type your name:

Jonathanlj

< oK > < (Cancel

The password=True option can be passed to the input_dialog() function to turn this into a password input box.

3.6.3 Yes/No confirmation dialog

The yes_no_dialog() function displays a yes/no confirmation dialog. It will return a boolean according to the
selection.

from prompt_toolkit.shortcuts import yes_no_dialog

result = yes_no_dialog(
title='Yes/No dialog example',
text="Do you want to confirm?').run()

3.6. Dialogs 41

prompt,oolkit Documentation, Release3.0.23

——1 Yes/No dialog example |——

Do you want to confirm?

Yes e < No

3.6.4 Button dialog

The button_dialog() function displays a dialog with choices offered as buttons. Buttons are indicated as a list of
tuples, each providing the label (first) and return value if clicked (second).

from prompt_toolkit.shortcuts import button_dialog

result = button_dialog(

title="Button dialog example',
text="'Do you want to confirm?',
buttons=[

('Yes', True),

('No', False),

('Maybe...', None)
1,

) .run(

42 Chapter 3. Table of contents

prompt.oolkit Documentation, Release3.0.23

| Button dialog example |

Are you sure?

Yes N < No

3.6.5 Radio list dialog

The radiolist_dialog() function displays a dialog with choices offered as a radio list. The values are provided as
a list of tuples, each providing the return value (first element) and the displayed value (second element).

from prompt_toolkit.shortcuts import radiolist_dialog

result = radiolist_dialog(
title="RadiolList dialog",
text="Which breakfast would you like ?",
values=[
("breakfastl", "Eggs and beacon"),
("breakfast2", "French breakfast"),
("breakfast3", "Equestrian breakfast")
]
).run()

3.6. Dialogs 43

prompt,oolkit Documentation, Release3.0.23

3.6.6 Checkbox list dialog

The checkboxlist_dialog() has the same usage and purpose than the Radiolist dialog, but allows several values to
be selected and therefore returned.

from prompt_toolkit.shortcuts import checkboxlist_dialog

results_array = checkboxlist_dialog(
title="CheckboxList dialog",
text="What would you like in your breakfast ?",

values=[
("eggs", "Eggs"),
("bacon", "Bacon"),
("croissants", "20 Croissants"),
("daily", "The breakfast of the day")
]
).run()

3.6.7 Styling of dialogs

A custom Style instance can be passed to all dialogs to override the default style. Also, text can be styled by passing
an HTML object.

from prompt_toolkit.formatted_text import HTML
from prompt_toolkit.shortcuts import message_dialog
from prompt_toolkit.styles import Style

example_style = Style.from_dict({

'dialog': 'bg:#88f£88",
'dialog frame.label': 'bg:#ffffff #000000',
'dialog.body': 'bg:#000000 #00ff00',
'dialog shadow': 'bg:#00aa00"',

i)

message_dialog(
title=HTML('<style bg="blue" fg="white">Styled</style> '
'<style fg="ansired">dialog</style> window'),
text='Do you want to continue?\nPress ENTER to quit.',
style=example_style) .run()

44 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

) @
L 4 v

| Styled dialog window |

Do you want to continue?
Press ENTER to quit.

<]

3.6.8 Styling reference sheet

In reality, the shortcut commands presented above build a full-screen frame by using a list of components. The two
tables below allow you to get the classnames available for each shortcut, therefore you will be able to provide a custom
style for every element that is displayed, using the method provided above.

Note: All the shortcuts use the Dialog component, therefore it isn’t specified explicitly below.

3.6. Dialogs 45

prompt;oolkit Documentation, Release3.0.23

Shortcut Components used

dial
yes_no_dialog e Label

e Button (x2)

button_dialog Label

e Button

input_dialog e TextArea

¢ Button (x2)

message_dialog e Label

e Button

radiolist_dialog Label

e RadioList
e Button (x2)

checkboxlist_dialog Label

¢ CheckboxList
e Button (x2)

dial
progress_dialog e Label

* TextArea (locked)
* ProgressBar

46 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

Components Available classnames
Dialog * dialog
e dialog.body
TextArea e text-area
e text-area.prompt
Label
abe e label
Button
e button
e button. focused
e button.arrow
e button.text
F
rame e frame
e frame.border
e frame.label
Shad
adow » shadow
RadioList e radio-list
e radio
e radio-checked
e radio-selected
CheckboxList
eCKboxXLIs * checkbox-list
¢ checkbox
¢ checkbox-checked
¢ checkbox-selected
VerticalLine i
e line
e vertical-line
HorizontalLine i
e line
e horizontal-line
ProgressBar

* progress-bar
* progress-bar.used

3.6. Dialogs

47

prompt;oolkit Documentation, Release3.0.23

Example

Let’s customize the example of the checkboxlist_dialog.

It uses 2 Button, a CheckboxList and a Label, packed inside a Dialog. Therefore we can customize each of these
elements separately, using for instance:

from prompt_toolkit.shortcuts import checkboxlist_dialog
from prompt_toolkit.styles import Style

results = checkboxlist_dialog(
title="CheckboxList dialog",
text="What would you like in your breakfast ?",

values=[
("eggs", "Eggs"),
("bacon", "Bacon"),
("croissants", "20 Croissants'"),

("daily", "The breakfast of the day")

1,

style=Style. from_dict({
'dialog': 'bg:#cdbbb3',
'button': 'bg:#bf99a4’,
'checkbox': '#e8612c',
'dialog.body': 'bg:#a9cfd0',
'dialog shadow': 'bg:#c98982"',
'frame.label': '#fcaca3',
'dialog.body label': '#£fd8bb6',

b

).run()

3.7 Progress bars

Prompt_toolkit ships with a high level API for displaying progress bars, inspired by tqdm

Warning: The API for the prompt_toolkit progress bars is still very new and can possibly change in the future. It
is usable and tested, but keep this in mind when upgrading.

Remember that the examples directory of the prompt_toolkit repository ships with many progress bar examples as well.

3.7.1 Simple progress bar

Creating a new progress bar can be done by calling the ProgressBar context manager.

The progress can be displayed for any iterable. This works by wrapping the iterable (like range) with the ProgressBar
context manager itself. This way, the progress bar knows when the next item is consumed by the forloop and when
progress happens.

from prompt_toolkit.shortcuts import ProgressBar
import time

(continues on next page)

48 Chapter 3. Table of contents

https://github.com/tqdm/tqdm
https://github.com/prompt-toolkit/python-prompt-toolkit/tree/master/examples

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

with ProgressBar() as pb:
for i in pb(range(800)):
time.sleep(.01)

$ python simple-progress-bar.py

] 313/800 eta [00:05]

Keep in mind that not all iterables can report their total length. This happens with a typical generator. In that case, you
can still pass the total as follows in order to make displaying the progress possible:

def some_iterable():
yield ...

with ProgressBar() as pb:
for i in pb(some_iterable, total=1000):
time.sleep(.01)

3.7.2 Multiple parallel tasks

A prompt_toolkit ProgressBar can display the progress of multiple tasks running in parallel. Each task can run in a
separate thread and the ProgressBar user interface runs in its own thread.

Notice that we set the “daemon” flag for both threads that run the tasks. This is because control-c will stop the progress
and quit our application. We don’t want the application to wait for the background threads to finish. Whether you want
this depends on the application.

from prompt_toolkit.shortcuts import ProgressBar
import time
import threading

with ProgressBar() as pb:
Two parallel tasks.
def task_10):
for i in pb(range(100)):
time.sleep(.05)

def task_20):
for i in pb(range(150)):
time.sleep(.08)

Start threads.

tl = threading.Thread(target=task_1)
t2 = threading.Thread(target=task_2)
tl.daemon = True

t2.daemon = True

tl.start(Q)

t2.start(Q

Wait for the threads to finish. We use a timeout for the join() call,

(continues on next page)

3.7. Progress bars 49

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

because on Windows, join cannot be interrupted by Control-C or any other
signal.
for t in [t1, t2]:
while t.is_alive():
t.join(timeout=.5)

>] 100/100 eta [00:00]

] 77/150 eta [00:05]

3.7.3 Adding a title and label

Each progress bar can have one title, and for each task an individual label. Both the title and the labels can be formatted
text.

from prompt_toolkit.shortcuts import ProgressBar
from prompt_toolkit.formatted_text import HTML
import time

title = HTML('Downloading <style bg="yellow" fg="black">4 files...</style>")
label = HTML('<ansired>some file</ansired>: ')

with ProgressBar(title=title) as pb:
for i in pb(range(800), label=label):
time.sleep(.01)

$ python colored-title-and-label.py
Downloading

. 31.5% [===>] 252/800 eta [00:05]

3.7.4 Formatting the progress bar

The visualisation of a ProgressBar can be customized by using a different sequence of formatters. The default
formatting looks something like this:

from prompt_toolkit.shortcuts.progress_bar.formatters import *

default_formatting = [
Label(),
Text(' "),
Percentage(),
Text(' '),
Bar(),
Text(' "),
Progress(),
Text(' '),
Text('eta [', style='class:time-left'),
TimeLeft(),
Text(']', style='class:time-left'),

(continues on next page)

50 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

Text(' "),

That sequence of Formatter can be passed to the formatter argument of ProgressBar. So, we could change this and
modify the progress bar to look like an apt-get style progress bar:

from prompt_toolkit.shortcuts import ProgressBar

from prompt_toolkit.styles import Style

from prompt_toolkit.shortcuts.progress_bar import formatters
import time

style = Style.from_dict({
'label': 'bg:#f££f00 #000000',
'percentage’': 'bg:#ffff00 #000000',
"current': '#448844"',
'bar': '',

D)

custom_formatters = [
formatters.Label(),
formatters.Text(': [', style='class:percentage'),
formatters.Percentage(),
formatters.Text(']', style='class:percentage'),
formatters.Text(' '),
formatters.Bar(sym_a="'#', sym_b="#", sym_c='."),
formatters.Text(' '),

]

with ProgressBar(style=style, formatters=custom_formatters) as pb:
for i in pb(range(1600), label="Installing'):
time.sleep(.01)

$ python styled-apt-get-install.py

Installing: [64.4% | ia e e e e

3.7.5 Adding key bindings and toolbar

Like other prompt_toolkit applications, we can add custom key bindings, by passing a KeyBindings object:

from prompt_toolkit import HTML

from prompt_toolkit.key_binding import KeyBindings
from prompt_toolkit.patch_stdout import patch_stdout
from prompt_toolkit.shortcuts import ProgressBar

import os
import time

import signal

bottom_toolbar = HTML(' [f] Print "£f" [x] Abort.")

(continues on next page)

3.7. Progress bars 51

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

Create custom key bindings first.
kb = KeyBindings()
cancel = [False]

@kb.add('f")
def _(event):
print('You pressed "f .')

@kb.add('x")

def _(event):
" Send Abort (control-c) signal.
cancel[0] = True
0s.kill(os.getpid(), signal.SIGINT)

Use ‘patch_stdout’, to make sure that prints go above the
application.
with patch_stdout():
with ProgressBar(key_bindings=kb, bottom_toolbar=bottom_toolbar) as pb:
for i in pb(range(800)):
time.sleep(.01)

Stop when the cancel flag has been set.
if cancel[0]:
break

Notice that we use patch_stdout () to make printing text possible while the progress bar is displayed. This ensures
that printing happens above the progress bar.

[TERT]

Further, when “x” is pressed, we set a cancel flag, which stops the progress. It would also be possible to send SIGINT
to the mean thread, but that’s not always considered a clean way of cancelling something.

In the example above, we also display a toolbar at the bottom which shows the key bindings.

$ python custom-key-bindings-tmp.py
] 341/800 eta [00:04]

[f] Print "f" [x] Abort.

Read more about key bindings . ..

3.8 Building full screen applications

prompt_toolkit can be used to create complex full screen terminal applications. Typically, an application consists of a
layout (to describe the graphical part) and a set of key bindings.

The sections below describe the components required for full screen applications (or custom, non full screen applica-
tions), and how to assemble them together.

Before going through this page, it could be helpful to go through asking for input (prompts) first. Many things that
apply to an input prompt, like styling, key bindings and so on, also apply to full screen applications.

52 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

Note: Also remember that the examples directory of the prompt_toolkit repository contains plenty of examples.
Each example is supposed to explain one idea. So, this as well should help you get started.

Don’t hesitate to open a GitHub issue if you feel that a certain example is missing.

3.8.1 A simple application

Every prompt_toolkit application is an instance of an Application object. The simplest full screen example would
look like this:

from prompt_toolkit import Application

app = Application(full_screen=True)
app.run()

This will display a dummy application that says “No layout specified. Press ENTER to quit.”.

Note: If we wouldn’t set the full_screen option, the application would not run in the alternate screen buffer, and
only consume the least amount of space required for the layout.

An application consists of several components. The most important are:
* /O objects: the input and output device.

» The layout: this defines the graphical structure of the application. For instance, a text box on the left side, and a
button on the right side. You can also think of the layout as a collection of ‘widgets’.

* A style: this defines what colors and underline/bold/italic styles are used everywhere.
* A set of key bindings.

We will discuss all of these in more detail below.

3.8.2 1/0 objects

Every Application instance requires an I/O object for input and output:

* An Input instance, which is an abstraction of the input stream (stdin).

* An Output instance, which is an abstraction of the output stream, and is called by the renderer.
Both are optional and normally not needed to pass explicitly. Usually, the default works fine.

There is a third I/O object which is also required by the application, but not passed inside. This is the event loop, an
eventloop instance. This is basically a while-true loop that waits for user input, and when it receives something (like
a key press), it will send that to the the appropriate handler, like for instance, a key binding.

When run() is called, the event loop will run until the application is done. An application will quit when exit () is
called.

3.8. Building full screen applications 53

prompt;oolkit Documentation, Release3.0.23

3.8.3 The layout

A layered layout architecture

There are several ways to create a prompt_toolkit layout, depending on how customizable you want things to be. In
fact, there are several layers of abstraction.

* The most low-level way of creating a layout is by combining Container and UIControl objects.

Examples of Container objects are VSplit (vertical split), HSplit (horizontal split) and FloatContainer.
These containers arrange the layout and can split it in multiple regions. Each container can recursively contain
multiple other containers. They can be combined in any way to define the “shape” of the layout.

The Window object is a special kind of container that can contain a UIControl object. The UIControl ob-
ject is responsible for the generation of the actual content. The Window object acts as an adaptor between the
UIControl and other containers, but it’s also responsible for the scrolling and line wrapping of the content.

Examples of UIControl objects are BufferControl for showing the content of an editable/scrollable buffer,
and FormattedTextControl for displaying (formatted) text.

Normally, it is never needed to create new UIControl or Container classes, but instead you would create the
layout by composing instances of the existing built-ins.

* A higher level abstraction of building a layout is by using “widgets”. A widget is a reusable layout component
that can contain multiple containers and controls. Widgets have a __pt_container__ function, which returns
the root container for this widget. Prompt_toolkit contains a couple of widgets like TextArea, Button, Frame,
VerticalLine and so on.

* The highest level abstractions can be found in the shortcuts module. There we don’t have to think about the
layout, controls and containers at all. This is the simplest way to use prompt_toolkit, but is only meant for specific
use cases, like a prompt or a simple dialog window.

Containers and controls

The biggest difference between containers and controls is that containers arrange the layout by splitting the screen in
many regions, while controls are responsible for generating the actual content.

Note: Under the hood, the difference is:
e containers use absolute coordinates, and paint on a Screen instance.

* user controls create a UIContent instance. This is a collection of lines that represent the actual content. A
UIControl is not aware of the screen.

Abstract base class | Examples
Container HSplit VSplit FloatContainer Window ScrollablePane
UIControl BufferControl FormattedTextControl

The Window class itself is particular: it is a Container that can contain a UIControl. Thus, it’s the adaptor between
the two. The Window class also takes care of scrolling the content and wrapping the lines if needed.

Finally, there is the Layout class which wraps the whole layout. This is responsible for keeping track of which window
has the focus.

Here is an example of a layout that displays the content of the default buffer on the left, and displays "Hello world"
on the right. In between it shows a vertical line:

54 Chapter 3. Table of contents

prompt.oolkit Documentation, Release3.0.23

from prompt_toolkit import Application

from prompt_toolkit.buffer import Buffer

from prompt_toolkit.layout.containers import VSplit, Window

from prompt_toolkit.layout.controls import BufferControl, FormattedTextControl
from prompt_toolkit.layout.layout import Layout

bufferl = Buffer() # Editable buffer.

root_container = VSplit([
One window that holds the BufferControl with the default buffer on
the left.
Window(content=BufferControl (buffer=bufferl)),

A vertical line in the middle. We explicitly specify the width, to

make sure that the layout engine will not try to divide the whole

width by three for all these windows. The window will simply fill its
content by repeating this character.

Window(width=1, char='|"),

Display the text 'Hello world' on the right.
Window(content=FormattedTextControl (text="Hello world')),

D
layout = Layout(root_container)

app = Application(layout=layout, full_screen=True)
app.run() # You won't be able to Exit this app

Notice that if you execute this right now, there is no way to quit this application yet. This is something we explain in
the next section below.

More complex layouts can be achieved by nesting multiple VSplit, HSplit and FloatContainer objects.

If you want to make some part of the layout only visible when a certain condition is satisfied, use a
ConditionalContainer.

Finally, there is ScrollablePane, a container class that can be used to create long forms or nested layouts that are
scrollable as a whole.

Focusing windows

Focusing something can be done by calling the focus () method. This method is very flexible and accepts a Window,
a Buffer, a UIControl and more.

In the following example, we use get_app () for getting the active application.

from prompt_toolkit.application import get_app

This window was created earlier.
w = Window()

(continues on next page)

3.8. Building full screen applications 55

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

Now focus it.
get_app() .layout. focus(w)

Changing the focus is something which is typically done in a key binding, so read on to see how to define key bindings.

3.8.4 Key bindings

In order to react to user actions, we need to create a KeyBindings object and pass that to our Application.
There are two kinds of key bindings:
* Global key bindings, which are always active.

* Key bindings that belong to a certain UIControl and are only active when this control is focused. Both
BufferControl FormattedTextControl take a key_bindings argument.

Global key bindings

Key bindings can be passed to the application as follows:

from prompt_toolkit import Application
from prompt_toolkit.key_binding import KeyBindings

kb = KeyBindings()
app = Application(key_bindings=kb)
app.run()

To register a new keyboard shortcut, we can use the add () method as a decorator of the key handler:

from prompt_toolkit import Application
from prompt_toolkit.key_binding import KeyBindings

kb = KeyBindings()

@kb.add('c-q")
def exit_(event):

o

Pressing Ctrl-Q will exit the user interface.

Setting a return value means: quit the event loop that drives the user
interface and return this value from the “Application.run()’ call.

o

event.app.exit()

app = Application(key_bindings=kb, full_screen=True)
app.run()

The callback function is named exit_ for clarity, but it could have been named _ (underscore) as well, because we
won’t refer to this name.

Read more about key bindings . ..

56 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

Modal containers

The following container objects take a modal argument VSplit, HSplit, and FloatContainer.

Setting modal=True makes what is called a modal container. Normally, a child container would inherit its parent key
bindings. This does not apply to modal containers.

Consider a modal container (e.g. VSplit) is child of another container, its parent. Any key bindings from the parent
are not taken into account if the modal container (child) has the focus.

This is useful in a complex layout, where many controls have their own key bindings, but you only want to enable the
key bindings for a certain region of the layout.

The global key bindings are always active.
3.8.5 More about the Window class

As said earlier, a Window is a Container that wraps a UIControl, like a BufferControl or
FormattedTextControl.

Note: Basically, windows are the leafs in the tree structure that represent the UL

A Window provides a “view” on the UIControl, which provides lines of content. The window is in the first place
responsible for the line wrapping and scrolling of the content, but there are much more options.

* Adding left or right margins. These are used for displaying scroll bars or line numbers.

* There are the cursorline and cursorcolumn options. These allow highlighting the line or column of the cursor
position.

¢ Alignment of the content. The content can be left aligned, right aligned or centered.

* Finally, the background can be filled with a default character.

3.8.6 More about buffers and BufferControl

Input processors

A Processor is used to postprocess the content of a BufferControl before it’s displayed. It can for instance highlight
matching brackets or change the visualisation of tabs and so on.

A Processor operates on individual lines. Basically, it takes a (formatted) line and produces a new (formatted) line.

Some build-in processors:

Processor Usage:

HighlightSearchProcessor Highlight the current search results.
HighlightSelectionProcessor Highlight the selection.
PasswordProcessor Display input as asterisks. (* characters).
BracketsMismatchProcessor Highlight open/close mismatches for brackets.
BeforeInput Insert some text before.

AfterInput Insert some text after.
AppendAutoSuggestion Append auto suggestion text.
ShowLeadingWhiteSpaceProcessor Visualise leading whitespace.
ShowTrailinglWhiteSpaceProcessor | Visualise trailing whitespace.
TabsProcessor Visualise tabs as n spaces, or some symbols.

3.8. Building full screen applications 57

prompt;oolkit Documentation, Release3.0.23

A BufferControl takes only one processor as input, but it is possible to “merge” multiple processors into one with
the merge_processors () function.

3.9 Tutorials

3.9.1 Tutorial: Build an SQLite REPL

The aim of this tutorial is to build an interactive command line interface for an SQLite database using prompt_toolKkit.

First, install the library using pip, if you haven’t done this already.

pip install prompt_toolkit

Read User Input

Let’s start accepting input using the prompt () function. This will ask the user for input, and echo back whatever the
user typed. We wrap it in amain() function as a good practice.

from prompt_toolkit import prompt

def main(Q:
text = prompt('> ')
print('You entered:', text)
if == '__main__":
main()

tutorial — -bash — 43x7

Jonathan# python sqglite-cli.py

> select * from mytable;

You entered: select * from mytable;
jonathan#

58 Chapter 3. Table of contents

https://github.com/prompt-toolkit/python-prompt-toolkit

prompt;oolkit Documentation, Release3.0.23

Loop The REPL

Now we want to call the prompt () method in a loop. In order to keep the history, the easiest way to do it is to use a
PromptSession. This uses an InMemoryHistory underneath that keeps track of the history, so that if the user presses

the up-arrow, they’ll see the previous entries.

The prompt () method raises KeyboardInterrupt when ControlC has been pressed and EOFError when ControlD
has been pressed. This is what people use for cancelling commands and exiting in a REPL. The try/except below
handles these error conditions and make sure that we go to the next iteration of the loop or quit the loop respectively.

from prompt_toolkit import PromptSession

def main(Q):
session = PromptSession()

while True:
try:
text = session.prompt('> ')
except KeyboardInterrupt:
continue
except EOFError:
break
else:
print('You entered:', text)
print ('GoodBye!")

if == '__main__
main()

tutorial — -bash — 43x10
Jonathan# python sqlite-cli.py
> select * from mytable;
You entered: select * from mytable;
> select * from othertable;
You entered: select * from othertable;

>
GoodBye!
jonathan#

3.9. Tutorials

59

prompt;oolkit Documentation, Release3.0.23

Syntax Highlighting

This is where things get really interesting. Let’s step it up a notch by adding syntax highlighting to the user input. We
know that users will be entering SQL statements, so we can leverage the Pygments library for coloring the input. The
lexer parameter allows us to set the syntax lexer. We're going to use the SqlLexer from the Pygments library for
highlighting.

Notice that in order to pass a Pygments lexer to prompt_toolkit, it needs to be wrapped into a PygmentsLexer.

from prompt_toolkit import PromptSession
from prompt_toolkit.lexers import PygmentsLexer
from pygments.lexers.sql import SqlLexer

def main(Q:
session = PromptSession(lexer=PygmentsLexer(SqlLexer))

while True:
try:
text = session.prompt('> ')
except KeyboardInterrupt:
continue
except EOFError:
break
else:
print('You entered:', text)
print ('GoodBye!")

if == '__main__"

® tutorial — python sglite-cli.py — 43x7

Jonathan# python sqlite-cli.py

> mytable;

You entered: select * from mytable;
>

60 Chapter 3. Table of contents

http://pygments.org/
http://pygments.org/

prompt.oolkit Documentation, Release3.0.23

Auto-completion
Now we are going to add auto completion. We’d like to display a drop down menu of possible keywords when the user
starts typing.

We can do this by creating an sql_completer object from the WordCompleter class, defining a set of keywords for the
auto-completion.

Like the lexer, this sql_completer instance can be passed to either the PromptSession class or the prompt ()
method.

from prompt_toolkit import PromptSession

from prompt_toolkit.completion import WordCompleter
from prompt_toolkit.lexers import PygmentsLexer
from pygments.lexers.sql import SqlLexer

sql_completer = WordCompleter([

'abort', 'action', 'add', 'after', 'all', 'alter', 'analyze', 'and',
'as', 'asc', 'attach', 'autoincrement', 'before', 'begin', 'between',
'by', 'cascade', 'case', 'cast', 'check', 'collate', 'column',
'commit', 'conflict', 'constraint', 'create', 'cross', 'current_date',
'current_time', 'current_timestamp', 'database', 'default',
'deferrable', 'deferred', 'delete', 'desc', 'detach', 'distinct',
'drop', 'each', 'else', 'end', 'escape',6 'except',6 'exclusive',
'exists', 'explain', 'fail', 'for', 'foreign', 'from', 'full', 'glob',
'group', 'having', 'if', 'ignore', 'immediate', 'in', 'index',
'indexed', 'initially', 'inner', 'insert', 'instead', 'intersect',
'into', 'is', 'isnull', 'join', 'key', 'left', 'like', 'limit',
'match', 'natural', 'no', 'not', 'notnull', 'null', 'of', 'offset',
'on', 'or', 'order', 'outer', 'plan', 'pragma', 'primary', 'query',
'raise', 'recursive', 'references', 'regexp', 'reindex', 'release',
'rename', 'replace', 'restrict', 'right', 'rollback', 'row',
'savepoint', 'select', 'set', 'table', 'temp', 'temporary', 'then',
'to', 'transaction', 'trigger', 'union', 'unique', 'update', 'using',
'vacuum', 'values', 'view', 'virtual', 'when', 'where', 'with',

'without'], ignore_case=True)

def main(Q:
session = PromptSession(
lexer=PygmentsLexer(SqlLexer), completer=sql_completer)

while True:
try:
text = session.prompt('> ')
except KeyboardInterrupt:
continue
except EOFError:
break
else:
print('You entered:', text)
print('GoodBye! ")

if __name__ == '__main__':
main()

3.9. Tutorials 61

https://www.sqlite.org/lang_keywords.html

prompt;oolkit Documentation, Release3.0.23

® tutorial — python sglite-cli.py — 43x12

Jonathan# python sqlite-cli.py
> mytable;
You entered: select * from mytable;
> d
database
default

deferrable
deferred
delete
desc
detach
distinct

In about 30 lines of code we got ourselves an auto completing, syntax highlighting REPL. Let’s make it even better.

Styling the menus

If we want, we can now change the colors of the completion menu. This is possible by creating a Style instance and
passing it to the prompt () function.

from prompt_toolkit import PromptSession

from prompt_toolkit.completion import WordCompleter
from prompt_toolkit.lexers import PygmentsLexer
from prompt_toolkit.styles import Style

from pygments.lexers.sql import SqlLexer

sql_completer = WordCompleter([

'abort', 'action', 'add', 'after', 'all', 'alter', 'analyze', 'and',
'as', 'asc', 'attach', 'autoincrement', 'before', 'begin', 'between',
'by', 'cascade', 'case', 'cast', 'check', 'collate', 'column',
'commit', 'conflict', 'constraint', 'create', 'cross', 'current_date',
'current_time', 'current_timestamp', 'database', 'default',
'deferrable', 'deferred', 'delete', 'desc', 'detach', 'distinct',
'drop', 'each', 'else', 'end', 'escape', 'except', 'exclusive',
'exists', 'explain', 'fail', 'for', 'foreign', 'from', 'full', 'glob',
'group', 'having', 'if', 'ignore', 'immediate', 'in', 'index',

(continues on next page)

62 Chapter 3. Table of contents

prompt.oolkit Documentation, Release3.0.23

(continued from previous page)

'indexed', 'initially', 'inner', 'insert', 'instead', 'intersect',
'into', 'is', 'isnull', 'join', 'key', 'left', 'like', 'limit',
'match', 'nmatural', 'no', 'not', 'notnull', 'null', 'of', 'offset',
'on', 'or', 'order', 'outer', 'plan', 'pragma', 'primary', 'query',
'raise', 'recursive', 'references', 'regexp', 'reindex', 'release',
'rename', 'replace', 'restrict', 'right', 'rollback', 'row',
'savepoint', 'select', 'set', 'table', 'temp', 'temporary', 'then',
'to', 'transaction', 'trigger', 'union', 'unique', 'update', 'using',
'vacuum', 'values', 'view', 'virtual', 'when', 'where', 'with',

'without'], ignore_case=True)

style = Style.from_dict({
'completion-menu.completion': 'bg:#008888 #ffffff',
'completion-menu.completion.current': 'bg:#00aaaa #000000',
'scrollbar.background': 'bg:#88aaaa’,
'scrollbar.button': 'bg:#222222"',

D)

def main(Q):
session = PromptSession(
lexer=PygmentsLexer(SqlLexer), completer=sql_completer, style=style)

while True:
try:
text = session.prompt('> ")
except KeyboardInterrupt:
continue
except EOFError:
break
else:
print('You entered:', text)
print('GoodBye! ")

if __name__ == '__main__"':
main()

3.9. Tutorials 63

prompt;oolkit Documentation, Release3.0.23

| NON tutorial — python sqlite-cli.py — 43x12
jonathan# python sqlite-cli.py
> mytable;

database

default

deferrable

deferred

desc
detach
distinct
drop
each

All that’s left is hooking up the sqlite backend, which is left as an exercise for the reader. Just kidding... Keep reading.

Hook up Sqlite

This step is the final step to make the SQLite REPL actually work. It’s time to relay the input to SQLite.

Obviously I haven’t done the due diligence to deal with the errors. But it gives a good idea of how to get started.

#!/usr/bin/env python
import sys
import sqlite3

from prompt_toolkit import PromptSession

from prompt_toolkit.completion import WordCompleter
from prompt_toolkit.lexers import PygmentsLexer
from prompt_toolkit.styles import Style

from pygments.lexers.sql import SqlLexer

sql_completer = WordCompleter([
'abort', 'action', 'add', 'after', 'all', 'alter', 'analyze', 'and',
'as', 'asc', 'attach', 'autoincrement', 'before', 'begin', 'between',
'by', 'cascade', 'case', 'cast', 'check', 'collate', 'column',
'commit', 'conflict', 'constraint', 'create', 'cross', 'current_date',
'current_time', 'current_timestamp', 'database', 'default',

(continues on next page)

64 Chapter 3. Table of contents

prompt.oolkit Documentation, Release3.0.23

(continued from previous page)

'deferrable', 'deferred', 'delete', 'desc', 'detach', 'distinct',
'"drop', 'each', 'else', 'end', 'escape', 'except',6 'exclusive',
'exists', 'explain', 'fail', 'for', 'foreign', 'from', 'full', 'glob',
'group', 'having', 'if', 'ignore', 'immediate', 'in', 'index',
'indexed', 'initially', 'inner', 'insert', 'instead', 'intersect',
'into', 'is', 'isnull', 'join', 'key', 'left', 'like', 'limit',
'match', 'natural', 'no', 'not', 'notnull', 'null', 'of', 'offset',
'on', 'or', 'order', 'outer', 'plan', 'pragma', 'primary', 'query',
'raise', 'recursive', 'references', 'regexp', 'reindex', 'release',
'rename', 'replace', 'restrict', 'right', 'rollback', 'row',
'savepoint', 'select', 'set', 'table', 'temp', 'temporary', 'then',
'to', 'transaction', 'trigger', 'union', 'unique', 'update', 'using',
'vacuum', 'values', 'view', 'virtual', 'when', 'where', 'with',

'without'], ignore_case=True)

style = Style.from_dict({
'completion-menu.completion': 'bg:#008888 #ffffff',
'completion-menu.completion.current': 'bg:#00aaaa #000000',
'scrollbar.background': 'bg:#88aaaa',
'scrollbar.button': 'bg:#222222"',

19)

def main(database):
connection = sqlite3.connect(database)
session = PromptSession(
lexer=PygmentsLexer(SqlLexer), completer=sql_completer, style=style)

while True:
try:
text = session.prompt('> ')
except KeyboardInterrupt:
continue # Control-C pressed. Try again.
except EOFError:
break # Control-D pressed.

with connection:

try:

messages = connection.execute(text)
except Exception as e:

print(repr(e))
else:

for message in messages:

print (message)

print('GoodBye! ")

if _name__ == '__main__':
if len(sys.argv) < 2:
db = '":memory:'
else:

db = sys.argv[1]

(continues on next page)

3.9. Tutorials 65

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

main(db)

[NON) tutorial — python sglite-cli.py — 43x13
jonathan# python sqlite-cli.py
> blah(a, b);

> blah 1,
blah;

>
a, 2

default
deferrable
deferred

desc
detach

I hope that gives an idea of how to get started on building command line interfaces.

The End.

3.10 Advanced topics

3.10.1 More about key bindings

This page contains a few additional notes about key bindings.

Key bindings can be defined as follows by creating a KeyBindings instance:

from prompt_toolkit.key_binding import KeyBindings
bindings = KeyBindings()

@bindings.add('a')
def _(event):

(continues on next page)

66 Chapter 3.

Table of contents

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

Do something if 'a' has been pressed.

@bindings.add('c-t")
def _(event):
" Do something if Control-T has been pressed.

Note: c-q (control-q) and c-s (control-s) are often captured by the terminal, because they were used traditionally for
software flow control. When this is enabled, the application will automatically freeze when c-s is pressed, until c-q
is pressed. It won’t be possible to bind these keys.

In order to disable this, execute the following command in your shell, or even add it to your .bashrc.

stty -ixon

Key bindings can even consist of a sequence of multiple keys. The binding is only triggered when all the keys in this
sequence are pressed.

@bindings.add('a', 'b")
def _(event):
" Do something if 'a' is pressed and then 'b' is pressed.

If the user presses only a, then nothing will happen until either a second key (like ») has been pressed or until the
timeout expires (see later).

List of special keys

Besides literal characters, any of the following keys can be used in a key binding:

3.10. Advanced topics 67

prompt;oolkit Documentation, Release3.0.23

Name Possible keys

Escape Shift + | escape s-escape

escape

Arrows left, right, up, down

Navigation home, end, delete, pageup, pagedown, insert

Control+letter c-a, c-b,c-c,c-d, c-e, c-£, c-g,c-h, c-i, c-j, c-k, c-1,
c-m, c-n, c-o, C-p, c-q, C-I, C-S, C-t, C-u, C-V, C-W, C-X,
c-y, Cc-z

Control + num- | c-1, c-2,c-3,c-4,c-5,c-6,c-7,c-8,c-9,c-0

ber

Control + arrow | c-left, c-right, c-up, c-down
Other control | c-@, c-\, c-], c-A, c-_, c-delete

keys

Shift + arrow s-left, s-right, s-up, s-down

Control + Shift+ | c-s-left, c-s-right, c-s-up, c-s-down
arrow

Other shift keys s-delete, s-tab

F-keys f1, £2, £3, f4, £5, f6, £7, £8, £9, £10, £11, £f12,

£13, £14, £15, £16, £17, £18, £19, £20, £21, £22, £23, £24

There are a couple of useful aliases as well:

c-h | backspace
c-@ | c-space
enter

c-i | tab

Note: Note that the supported keys are limited to what typical VT 100 terminals offer. Binding c-7 (control + number
7) for instance is not supported.

Binding alt+something, option+something or meta+something

Vt100 terminals translate the alt key into a leading escape key. For instance, in order to handle alt-£, we have to
handle escape + f. Notice that we receive this as two individual keys. This means that it’s exactly the same as first
typing escape and then typing f£. Something this alt-key is also known as option or meta.

In code that looks as follows:

@bindings.add('escape’', 'f')
def _(event):
" Do something if alt-f or meta-f have been pressed.

68 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

Wildcards

Sometimes you want to catch any key that follows after a certain key stroke. This is possible by binding the ‘<any>’
key:

@bindings.add('a', '<any>")
def _(event):

This will handle aa, ab, ac, etcetera. The key binding can check the event object for which keys exactly have been
pressed.

Attaching a filter (condition)

In order to enable a key binding according to a certain condition, we have to pass it a Filter, usually a Condition
instance. (Read more about filters.)

from prompt_toolkit.filters import Condition

@Condition

def is_active(Q):
" Only activate key binding on the second half of each minute.
return datetime.datetime.now().second > 30

@bindings.add('c-t', filter=is_active)
def _(event):
pass

The key binding will be ignored when this condition is not satisfied.

ConditionalKeyBindings: Disabling a set of key bindings

Sometimes you want to enable or disable a whole set of key bindings according to a certain condition. This is possible
by wrapping it in a ConditionalKeyBindings object.

from prompt_toolkit.key_binding import ConditionalKeyBindings

@Condition

def is_active():
" Only activate key binding on the second half of each minute.
return datetime.datetime.now().second > 30

bindings = ConditionalKeyBindings(
key_bindings=my_bindings,
filter=is_active)

If the condition is not satisfied, all the key bindings in my_bindings above will be ignored.

3.10. Advanced topics 69

prompt;oolkit Documentation, Release3.0.23

Merging key bindings

Sometimes you have different parts of your application generate a collection of key bindings. It is possible to merge
them together through the merge_key_bindings () function. This is preferred above passing a KeyBindings object
around and having everyone populate it.

from prompt_toolkit.key_binding import merge_key_bindings

bindings = merge_key_bindings([

bindingsl,
bindings2,
D
Eager

Usually not required, but if ever you have to override an existing key binding, the eager flag can be useful.

Suppose that there is already an active binding for ab and you’d like to add a second binding that only handles a. When
the user presses only a, prompt_toolkit has to wait for the next key press in order to know which handler to call.

By passing the eager flag to this second binding, we are actually saying that prompt_toolkit shouldn’t wait for longer
matches when all the keys in this key binding are matched. So, if a has been pressed, this second binding will be called,
even if there’s an active ab binding.

@bindings.add('a', 'b")
def binding_1(event):

@bindings.add('a', eager=True)
def binding_2(event):

This is mainly useful in order to conditionally override another binding.

Asyncio coroutines

Key binding handlers can be asyncio coroutines.

from prompt_toolkit.application import in_terminal

@bindings.add('x")
async def print_hello(event):
Pressing 'x' will print 5 times "hello" in the background above the
prompt.
for i in range(5):
Print hello above the current prompt.
async with in_terminal():
print('hello")

Sleep, but allow further input editing in the meantime.
await asyncio.sleep(l)

70 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

If the user accepts the input on the prompt, while this coroutine is not yet finished , an asyncio. CancelledError exception
will be thrown in this coroutine.

Timeouts

There are two timeout settings that effect the handling of keys.

e Application.ttimeoutlen: Like Vim’s ttimeoutlen option. When to flush the input (For flushing escape
keys.) This is important on terminals that use vt100 input. We can’t distinguish the escape key from for instance
the left-arrow key, if we don’t know what follows after “x1b”. This little timer will consider “x1b” to be escape
if nothing did follow in this time span. This seems to work like the ttimeoutlen option in Vim.

* KeyProcessor.timeoutlen: like Vim’s timeoutlen option. This can be None or a float. For instance, suppose
that we have a key binding AB and a second key binding A. If the uses presses A and then waits, we don’t handle
this binding yet (unless it was marked ‘eager’), because we don’t know what will follow. This timeout is the
maximum amount of time that we wait until we call the handlers anyway. Pass None to disable this timeout.

Recording macros

Both Emacs and Vi mode allow macro recording. By default, all key presses are recorded during a macro, but it is
possible to exclude certain keys by setting the record_in_macro parameter to False:

@bindings.add('c-t', record_in_macro=False)
def _(event):
pass

Creating new Vi text objects and operators

We tried very hard to ship prompt_toolkit with as many as possible Vi text objects and operators, so that text editing
feels as natural as possible to Vi users.

If you wish to create a new text object or key binding, that is actually possible. Check the custom-vi-operator-and-text-
object.py example for more information.

Processing .inputrc

GNU readline can be configured using an .inputrc configuration file. This file contains key bindings as well as certain
settings. Right now, prompt_toolkit doesn’t support .inputrc, but it should be possible in the future.

3.10.2 More about styling

This page will attempt to explain in more detail how to use styling in prompt_toolkit.

To some extent, it is very similar to how Pygments styling works.

3.10. Advanced topics 71

http://pygments.org/

prompt;oolkit Documentation, Release3.0.23

Style strings
Many user interface controls, like Window accept a style argument which can be used to pass the formatting as a
string. For instance, we can select a foreground color:
e "fg:ansired" (ANSI color palette)
e "fg:ansiblue" (ANSI color palette)
o "fg:#ffaa33" (hexadecimal notation)
e "fg:darkred" (named color)
Or a background color:
e "bg:ansired" (ANSI color palette)
e "bg:#ffaa33" (hexadecimal notation)
Or we can add one of the following flags:
e "bold"
e "italic"
* "underline"
e "blink"
* "reverse" (reverse foreground and background on the terminal.)
e "hidden"
Or their negative variants:
* "nobold"
* "noitalic"
* "nounderline"
e "noblink"
* "noreverse"
* "nohidden"
All of these formatting options can be combined as well:
e "fg:ansiyellow bg:black bold underline"

The style string can be given to any user control directly, or to a Container object from where it will propagate to
all its children. A style defined by a parent user control can be overridden by any of its children. The parent can
for instance say style="bold underline" where a child overrides this style partly by specifying style="nobold
bg:ansired".

Note: These styles are actually compatible with Pygments styles, with additional support for reverse and blink. Further,
we ignore flags like roman, sans, mono and border.

The following ANSI colors are available (both for foreground and background):

Low intensity, dark. (One or two components 0x8®, the other 0x00.)
ansiblack, ansired, ansigreen, ansiyellow, ansiblue
ansimagenta, 'ansicyan, ansigray

(continues on next page)

72 Chapter 3. Table of contents

http://pygments.org/

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

High intensity, bright.
ansibrightblack, ansibrightred, ansibrightgreen, ansibrightyellow
ansibrightblue, ansibrightmagenta, ansibrightcyan, ansiwhite

In order to know which styles are actually used in an application, it is possible to call get_used_style_strings(),
when the application is done.

Class names

Like we do for web design, it is not a good habit to specify all styling inline. Instead, we can attach class names to
UI controls and have a style sheet that refers to these class names. The Style can be passed as an argument to the
Application.

from prompt_toolkit.layout import VSplit, Window
from prompt_toolkit.styles import Style

layout = VSplit([
Window(BufferControl(...), style='class:left'),
HSplit([
Window(BufferControl(...), style='class:top'),
Window(BufferControl(...), style='class:bottom'),
], style='class:right")
D

style = Style([
('left', 'bg:ansired'),
('"top', 'fg:#00aaaa'),
('bottom', 'underline bold'),
D

It is possible to add multiple class names to an element. That way we’ll combine the styling for these class names.
Multiple classes can be passed by using a comma separated list, or by using the class: prefix twice.

Window(BufferControl(...), style='class:left,bottom'),
Window(BufferControl(...), style='class:left class:bottom'),

Itis possible to combine class names and inline styling. The order in which the class names and inline styling is specified
determines the order of priority. In the following example for instance, we’ll take first the style of the “header” class,
and then override that with a red background color.

Window(BufferControl(...), style='class:header bg:red'),

3.10. Advanced topics 73

prompt;oolkit Documentation, Release3.0.23

Dot notation in class names

The dot operator has a special meaning in a class name. If we write: style="class:a.b.c", then this will actually
expand to the following: style="class:a class:a.b class:a.b.c".

This is mainly added for Pygments lexers, which specify “Tokens” like this, but it’s useful in other situations as well.
Multiple classes in a style sheet

A style sheet can be more complex as well. We can for instance specify two class names. The following will underline
the left part within the header, or whatever has both the class “left” and the class “header” (the order doesn’t matter).

style = Style([
('header left', 'underline'),
D

If you have a dotted class, then it’s required to specify the whole path in the style sheet (just typing c or b.c doesn’t
work if the class is a.b. c):

style = Style([
('a.b.c', 'underline'),

D

It is possible to combine this:

style = Style([
('header body left.text', 'underline'),
D

Evaluation order of rules in a style sheet

The style is determined as follows:

* First, we concatenate all the style strings from the root control through all the parents to the child in one big
string. (Things at the right take precedence anyway.)

E.g: class:body bg:#aaaaaa #000000 class:header.focused class:left.text.highlighted
underline

* Then we go through this style from left to right, starting from the default style. Inline styling is applied directly.

If we come across a class name, then we generate all combinations of the class names that we collected so far
(this one and all class names to the left), and for each combination which includes the new class name, we look
for matching rules in our style sheet. All these rules are then applied (later rules have higher priority).

If we find a dotted class name, this will be expanded in the individual names (like class:1left class:left.
text class:left.text.highlighted), and all these are applied like any class names.

 Then this final style is applied to this user interface element.

74 Chapter 3. Table of contents

http://pygments.org/

prompt;oolkit Documentation, Release3.0.23

Using a dictionary as a style sheet

The order of the rules in a style sheet is meaningful, so typically, we use a list of tuples to specify the style. But is
also possible to use a dictionary as a style sheet. This makes sense for Python 3.6, where dictionaries remember their
ordering. An OrderedDict works as well.

from prompt_toolkit.styles import Style

style = Style.from_dict({
'header body left.text': 'underline',
b

Loading a style from Pygments

Pygments has a slightly different notation for specifying styles, because it maps styling to Pygments “Tokens”. A
Pygments style can however be loaded and used as follows:

from prompt_toolkit.styles.pygments import style_from_pygments_cls
from pygments.styles import get_style_by_name

style = style_from_pygments_cls(get_style_by_name('monokai'))

Merging styles together

Multiple StyIle objects can be merged together as follows:

from prompt_toolkit.styles import merge_styles

style = merge_styles([

stylel,
style2,
style3
D
Color depths

There are four different levels of color depths available:

1 bit Black and white | ColorDepth.DEPTH_1_BIT ColorDepth.MONOCHROME

4 bit ANSI colors ColorDepth.DEPTH_4_BIT ColorDepth.ANSI_COLORS_ONLY
8 bit 256 colors ColorDepth.DEPTH_8_BIT ColorDepth.DEFAULT

24 bit | True colors ColorDepth.DEPTH_24_BIT | ColorDepth.TRUE_COLOR

By default, 256 colors are used, because this is what most terminals support these days. If the TERM enviroment variable
is set to 1inux or eterm-color, then only ANSI colors are used, because of these terminals. The 24 bit true color
output needs to be enabled explicitely. When 4 bit color output is chosen, all colors will be mapped to the closest ANSI
color.

Setting the default color depth for any prompt_toolkit application can be done by setting the
PROMPT_TOOLKIT_COLOR_DEPTH environment variable. You could for instance copy the following into your
.bashrc file.

3.10. Advanced topics 75

http://pygments.org/

prompt;oolkit Documentation, Release3.0.23

export PROMPT_TOOLKIT_COLOR_DEPTH=DEPTH_1_BIT
export PROMPT_TOOLKIT_COLOR_DEPTH=DEPTH_4_BIT

export PROMPT_TOOLKIT_COLOR_DEPTH=DEPTH_8_BIT
export PROMPT_TOOLKIT_COLOR_DEPTH=DEPTH_24_BIT

An application can also decide to set the color depth manually by passing a ColorDepth value to the Application
object:

from prompt_toolkit.output.color_depth import ColorDepth

app = Application(
color_depth=ColorDepth.ANSI_COLORS_ONLY,

Style transformations

Prompt_toolkit supports a way to apply certain transformations to the styles near the end of the rendering pipeline.
This can be used for instance to change certain colors to improve the rendering in some terminals.

One useful example is the AdjustBrightnessStyleTransformation class, which takes min_brightness and
max_brightness as arguments which by default have 0.0 and 1.0 as values. In the following code snippet, we increase
the minimum brightness to improve rendering on terminals with a dark background.

from prompt_toolkit.styles import AdjustBrightnessStyleTransformation

app = Application(
style_transformation=AdjustBrightnessStyleTransformation(
min_brightness=0.5, # Increase the minimum brightness.
max_brightness=1.0,

-/

3.10.3 Filters

Many places in prompt_toolkit require a boolean value that can change over time. For instance:
* to specify whether a part of the layout needs to be visible or not;
* or to decide whether a certain key binding needs to be active or not;
e or the wrap_lines option of BufferControl;
¢ ctcetera.

These booleans are often dynamic and can change at runtime. For instance, the search toolbar should only be visible
when the user is actually searching (when the search buffer has the focus). The wrap_lines option could be changed
with a certain key binding. And that key binding could only work when the default buffer got the focus.

In prompt_toolkit, we decided to reduce the amount of state in the whole framework, and apply a simple kind of reactive
programming to describe the flow of these booleans as expressions. (It’s one-way only: if a key binding needs to know
whether it’s active or not, it can follow this flow by evaluating an expression.)

76 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

The (abstract) base class is Filter, which wraps an expression that takes no input and evaluates to a boolean. Getting
the state of a filter is done by simply calling it.

An example

The most obvious way to create such a Filter instance is by creating a Condition instance from a function. For
instance, the following condition will evaluate to True when the user is searching:

from prompt_toolkit.application.current import get_app
from prompt_toolkit.filters import Condition

is_searching = Condition(lambda: get_app().is_searching)

A different way of writing this, is by using the decorator syntax:

from prompt_toolkit.application.current import get_app
from prompt_toolkit.filters import Condition

@Condition
def is_searching():
return get_app().is_searching

This filter can then be used in a key binding, like in the following snippet:

from prompt_toolkit.key_binding import KeyBindings
kb = KeyBindings()

@kb.add('c-t', filter=is_searching)

def _(event):
Do, something, but only when searching.
pass

If we want to know the boolean value of this filter, we have to call it like a function:

print(is_searching())

Built-in filters
There are many built-in filters, ready to use. All of them have a lowercase name, because they represent the wrapped
function underneath, and can be called as a function.

e has_arg

¢ has_completions

* has_focus

e buffer_has_focus

* has_selection

* has_validation_error

* is_aborting

e is_done

3.10. Advanced topics 77

prompt;oolkit Documentation, Release3.0.23

e is_read_only

e is_multiline

¢ renderer_height_is_known
e in_editing_mode

e in_paste_mode

e vi_mode

e vi_navigation_mode

* vi_insert_mode

e vi_insert_multiple_mode
e vi_replace_mode

* vi_selection_mode

e vi_waiting_for_text_object_mode
e vi_digraph_mode

* emacs_mode

* emacs_insert_mode

* emacs_selection_mode

e is_searching

e control_is_searchable

e vi_search_direction_reversed

Combining filters

Filters can be chained with the & (AND) and | (OR) operators and negated with the ~ (negation) operator.

Some examples:

from prompt_toolkit.key_binding import KeyBindings
from prompt_toolkit.filters import has_selection, has_selection

kb = KeyBindings()

@kb.add('c-t', filter=~is_searching)

def _(event):
" Do something, but not while searching.
pass

@kb.add('c-t', filter=has_search | has_selection)
def _(event):

pass

Do something, but only when searching or when there is a selection.

78

Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

to_filter

Finally, in many situations you want your code to expose an API that is able to deal with both booleans as well as filters.
For instance, when for most users a boolean works fine because they don’t need to change the value over time, while
some advanced users want to be able this value to a certain setting or event that does changes over time.

In order to handle both use cases, there is a utility called to_filter().

This is a function that takes either a boolean or an actual Filter instance, and always returns a Filter.

from prompt_toolkit.filters.utils import to_filter

In each of the following three examples, 'f' will be a ‘Filter"
instance.

to_filter(True)

to_filter(False)

to_filter(Condition(lambda: True))

to_filterChas_search | has_selection)

Fh Hh Fh Hh SR R
Il

3.10.4 The rendering flow

Understanding the rendering flow is important for understanding how Container and UIControl objects interact.
We will demonstrate it by explaining the flow around a BufferControl.

Note: A BufferControl is a UIControl for displaying the content of a Buffer. A buffer is the object that holds
any editable region of text. Like all controls, it has to be wrapped into a Window.

Let’s take the following code:

from prompt_toolkit.enums import DEFAULT_BUFFER

from prompt_toolkit.layout.containers import Window
from prompt_toolkit.layout.controls import BufferControl
from prompt_toolkit.buffer import Buffer

b = Buffer(name=DEFAULT_BUFFER)
Window(content=BufferControl (buffer=b))

What happens when a Renderer objects wants a Container to be rendered on a certain Screen?
The visualisation happens in several steps:

1. The Renderer calls the write_to_screen() method of a Container. This is a request to paint the layout in
a rectangle of a certain size.

The Window object then requests the UIControl to create a UIContent instance (by -calling
create_content()). The user control receives the dimensions of the window, but can still decide to
create more or less content.

Inside the create_content () method of UIControl, there are several steps:

2. First, the buffer’s text is passed to the 1ex_document () method of a Lexer. This returns a function which
for a given line number, returns a “formatted text list” for that line (that’s a list of (style_string, text)
tuples).

3. This list is passed through a list of Processor objects. Each processor can do a transformation for each
line. (For instance, they can insert or replace some text, highlight the selection or search string, etc...)

3.10. Advanced topics 79

prompt;oolkit Documentation, Release3.0.23

4. The UIControl returns a UIContent instance which generates such a token lists for each lines.
The Window receives the UIContent and then:

5. It calculates the horizontal and vertical scrolling, if applicable (if the content would take more space than what
is available).

6. The content is copied to the correct absolute position Screen, as requested by the Renderer. While doing this,
the Window can possible wrap the lines, if line wrapping was configured.

Note that this process is lazy: if a certain line is not displayed in the Window, then it is not requested from the
UIContent. And from there, the line is not passed through the processors or even asked from the Lexer.

3.10.5 Running on top of the asyncio event loop

Note: New in prompt_toolkit 3.0. (In prompt_toolkit 2.0 this was possible using a work-around).

Prompt_toolkit 3.0 uses asyncio natively. Calling Application.run() will automatically run the asyncio event loop.

If however you want to run a prompt_toolkit Application within an asyncio environment, you have to call the
run_async method, like this:

from prompt_toolkit.application import Application
async def main(Q):

Define application.

application = Application(

)

result = await application.run_async()
print(result)

asyncio.get_event_loop() .run_until_complete(main())

3.10.6 Unit testing

Testing user interfaces is not always obvious. Here are a few tricks for testing prompt_toolkit applications.

PosixPipelnput and DummyOutput

During the creation of a prompt_toolkit Application, we can specify what input and output device to be used. By
default, these are output objects that correspond with sys.stdin and sys.stdout. In unit tests however, we want to replace
these.

* For the input, we want a “pipe input”. This is an input device, in which we can programatically send some input.
It can be created with create_pipe_input (), and that return either a PosixPipeInput or a Win32PipelInput
depending on the platform.

* For the output, we want a DummyOutput. This is an output device that doesn’t render anything. We don’t want
to render anything to sys.stdout in the unit tests.

80 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

Note: Typically, we don’t want to test the bytes that are written to sys.stdout, because these can change any time when
the rendering algorithm changes, and are not so meaningful anyway. Instead, we want to test the return value from the
Application or test how data structures (like text buffers) change over time.

So we programmatically feed some input to the input pipe, have the key bindings process the input and then test what
comes out of it.

In the following example we use a PromptSession, but the same works for any Application.

from prompt_toolkit.shortcuts import PromptSession
from prompt_toolkit.input import create_pipe_input
from prompt_toolkit.output import DummyOutput

def test_prompt_session():
inp = create_pipe_input()

try:
inp.send_text("hello\n")
session = PromptSession(
input=inp,
output=DummyOutput(),

result = session.prompt()
finally:
inp.close()

assert result == "hello"

In the above example, don’t forget to send the \n character to accept the prompt, otherwise the Application will wait
forever for some more input to receive.

Using an AppSession
Sometimes it’s not convenient to pass input or output objects to the Application, and in some situations it’s not even
possible at all. This happens when these parameters are not passed down the call stack, through all function calls.

An easy way to specify which input/output to use for all applications, is by creating an AppSession with this in-
put/output and running all code in that AppSession. This way, we don’t need to inject it into every Application or
print_formatted_text() call.

Here is an example where we use create_app_session():

from prompt_toolkit.application import create_app_session
from prompt_toolkit.shortcuts import print_formatted_text
from prompt_toolkit.output import DummyOutput

def test_something():
with create_app_session(output=DummyQutput()):

print_formatted_text('Hello world')

3.10. Advanced topics 81

prompt;oolkit Documentation, Release3.0.23

Pytest fixtures

In order to get rid of the boilerplate of creating the input, the DummyOutput, and the AppSession, we create a single
fixture that does it for every test. Something like this:

import pytest

from prompt_toolkit.application import create_app_session
from prompt_toolkit.input import create_pipe_input

from prompt_toolkit.output import DummyOutput

@pytest.fixture(autouse=True, scope="function")
def mock_input():
pipe_input = create_pipe_input()
try:
with create_app_session(input=pipe_input, output=DummyOutput()):
yield pipe_input
finally:
pipe_input.close()

Type checking

Prompt_toolkit 3.0 is fully type annotated. This means that if a prompt_toolkit application is typed too, it can be
verified with mypy. This is complementary to unit tests, but also great for testing for correctness.

3.10.7 Input hooks

Input hooks are a tool for inserting an external event loop into the prompt_toolkit event loop, so that the other loop can
run as long as prompt_toolkit (actually asyncio) is idle. This is used in applications like [Python, so that GUI toolkits
can display their windows while we wait at the prompt for user input.

As a consequence, we will “trampoline” back and forth between two event loops.

Note: This will use a SelectorEventLoop, not the :class: ProactorEventLoop (on Windows) due to the way the
implementation works (contributions are welcome to make that work).

from prompt_toolkit.eventloop.inputhook import set_eventloop_with_inputhook

def inputhook(inputhook_context):
At this point, we run the other loop. This loop is supposed to run
until either ‘inputhook_context.fileno" becomes ready for reading or
“inputhook_context.input_is_ready()" returns True.

A good way is to register this file descriptor in this other event
loop with a callback that stops this loop when this FD becomes ready.
There is no need to actually read anything from the FD.

while True:

set_eventloop_with_inputhook (inputhook)

(continues on next page)

82 Chapter 3. Table of contents

https://ipython.org/

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

Any asyncio code at this point will now use this new loop, with input
hook installed.

3.10.8 Architecture

TODO: this is a little outdated.

I

I

| - Parses the input stream coming from a VT100

| compatible terminal. Translates it into data input
| and control characters. Calls the corresponding

| handlers of the "InputStreamHandler® instance.

I

I

I

e.g. Translate '\x1b[6~' into "Keys.PageDown", call
the "feed_key' method of 'InputProcessor’.

InputStreamHandler

|
I
| - Has a "Registry’ of key bindings, it calls the
| bindings according to the received keys and the
| input mode.

|

I

We have Vi and Emacs bindings.

I

I

| - Every key binding consists of a function that
| receives an "Event' and usually it operates on
| the "Buffer’ object. (It could insert data or
| move the cursor for example.)

| Most of the key bindings operate on a "Buffer object, but
| they don't have to. They could also change the visibility
| of a menu for instance, or change the color scheme.

- Contains a data structure to hold the current
input (text and cursor position). This class

(continues on next page)

3.10. Advanced topics

83

prompt;oolkit Documentation, Release3.0.23

(continued from previous page)

implements all text manipulations and cursor
movements (Like e.g. cursor_forward, insert_char
or delete_word.)

Document (text, cursor_position)

I I
| |
| Accessed as the “document’ property of the [
| "Buffer’ class. This is a wrapper around the |
| text and cursor position, and contains |
| methods for querying this data , e.g. to give |
| the text before the cursor.

I

| Normally after every key press, the output will be

| rendered again. This happens in the event loop of

| the “Application’ where ‘Renderer.render’ is called.
v

I

I

| - When the renderer should redraw, the renderer

| asks the layout what the output should look like.
| - The layout operates on a "Screen object that he
| received from the 'Renderer’ and will put the

| toolbars, menus, highlighted content and prompt

| in place.
I

I

I

I

I

|

e T +
- +

I

v
- +
| Renderer I
| ======== |
| - Calculates the difference between the last output |
| and the new one and writes it to the terminal |
| output.
- +

84 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

3.10.9 The rendering pipeline

This document is an attempt to describe how prompt_toolkit applications are rendered. It’s a complex but logical
process that happens more or less after every key stroke. We’ll go through all the steps from the point where the user
hits a key, until the character appears on the screen.

Waiting for user input

Most of the time when a prompt_toolkit application is running, it is idle. It’s sitting in the event loop, waiting for some
I/O to happen. The most important kind of I/O we’re waiting for is user input. So, within the event loop, we have one file
descriptor that represents the input device from where we receive key presses. The details are a little different between
operating systems, but it comes down to a selector (like select or epoll) which waits for one or more file descriptor. The
event loop is then responsible for calling the appropriate feedback when one of the file descriptors becomes ready.

It is like that when the user presses a key: the input device becomes ready for reading, and the appropriate callback
is called. This is the read_from_input function somewhere in application.py. It will read the input from the Input
object, by calling read_keys ().

Reading the user input

The actual reading is also operating system dependent. For instance, on a Linux machine with a vt100 terminal, we
read the input from the pseudo terminal device, by calling os.read. This however returns a sequence of bytes. There
are two difficulties:

* The input could be UTF-8 encoded, and there is always the possibility that we receive only a portion of a multi-
byte character.

* vt100 key presses consist of multiple characters. For instance the “left arrow” would generate something like
\x1b[D. It could be that when we read this input stream, that at some point we only get the first part of such a
key press, and we have to wait for the rest to arrive.

Both problems are implemented using state machines.

e The UTF-8 problem is solved using codecs.getincrementaldecoder, which is an object in which we can feed the
incoming bytes, and it will only return the complete UTF-8 characters that we have so far. The rest is buffered
for the next read operation.

* Vt100 parsing is solved by the Vt100Parser state machine. The state machine itself is implemented using a
generator. We feed the incoming characters to the generator, and it will call the appropriate callback for key
presses once they arrive. One thing here to keep in mind is that the characters for some key presses are a prefix
of other key presses, like for instance, escape (\x1b) is a prefix of the left arrow key (\x1b[D). So for those, we
don’t know what key is pressed until more data arrives or when the input is flushed because of a timeout.

For Windows systems, it’s a little different. Here we use Win32 syscalls for reading the console input.

Processing the key presses

The Key objects that we receive are then passed to the KeyProcessor for matching against the currently registered
and active key bindings.

This is another state machine, because key bindings are linked to a sequence of key presses. We cannot call the handler
until all of these key presses arrive and until we’re sure that this combination is not a prefix of another combination.
For instance, sometimes people bind jj (a double j key press) to esc in Vi mode. This is convenient, but we want to
make sure that pressing j once only, followed by a different key will still insert the j character as usual.

3.10. Advanced topics 85

prompt;oolkit Documentation, Release3.0.23

Now, there are hundreds of key bindings in prompt_toolkit (in ptpython, right now we have 585 bindings). This is
mainly caused by the way that Vi key bindings are generated. In order to make this efficient, we keep a cache of
handlers which match certain sequences of keys.

Of course, key bindings also have filters attached for enabling/disabling them. So, if at some point, we get a list of
handlers from that cache, we still have to discard the inactive bindings. Luckily, many bindings share exactly the same
filter, and we have to check every filter only once.

Read more about key bindings . ..

The key handlers
Once a key sequence is matched, the handler is called. This can do things like text manipulation, changing the focus
or anything else.

After the handler is called, the user interface is invalidated and rendered again.

Rendering the user interface

The rendering is pretty complex for several reasons:

* We have to compute the dimensions of all user interface elements. Sometimes they are given, but sometimes this
requires calculating the size of UIControl objects.

* It needs to be very efficient, because it’s something that happens on every single key stroke.

* We should output as little as possible on stdout in order to reduce latency on slow network connections and older
terminals.

Calculating the total Ul height

Unless the application is a full screen application, we have to know how much vertical space is going to be consumed.
The total available width is given, but the vertical space is more dynamic. We do this by asking the root Container
object to calculate its preferred height. If this is a VSp1it or HSplit then this involves recursively querying the child
objects for their preferred widths and heights and either summing it up, or taking maximum values depending on the
actual layout. In the end, we get the preferred height, for which we make sure it’s at least the distance from the cursor
position to the bottom of the screen.

Painting to the screen

Then we create a Screen object. This is like a canvas on which user controls can paint their content. The
write_to_screen() method of the root Container is called with the screen dimensions. This will call recursively
write_to_screen() methods of nested child containers, each time passing smaller dimensions while we traverse
what is a tree of Container objects.

The most inner containers are Window objects, they will do the actual painting of the UIControl to the screen. This
involves line wrapping the UIControl’s text and maybe scrolling the content horizontally or vertically.

86 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

Rendering to stdout

Finally, when we have painted the screen, this needs to be rendered to stdout. This is done by taking the difference
of the previously rendered screen and the new one. The algorithm that we have is heavily optimized to compute this
difference as quickly as possible, and call the appropriate output functions of the Output back-end. At the end, it will
position the cursor in the right place.

3.11 Reference

3.11.1 Application

class prompt_toolkit.application.AppSession(input: Optional[Input] = None, output: Optional[Output]
= None)
An AppSession is an interactive session, usually connected to one terminal. Within one such session, interaction
with many applications can happen, one after the other.

The input/output device is not supposed to change during one session.
Warning: Always use the create_app_session function to create an instance, so that it gets activated correctly.
Parameters

* input - Use this as a default input for all applications running in this session, unless an input
is passed to the Application explicitely.

» output — Use this as a default output.

3.11. Reference 87

prompt;oolkit Documentation, Release3.0.23

class prompt_toolkit.application.Application(layout: Optional[prompt_toolkit.layout.layout.Layout] =
None, style:
Optional[prompt_toolkit.styles.base.BaseStyle] = None,
include_default_pygments_style:
Union[prompt_toolkit.filters.base.Filter, bool] = True,
style_transformation: Op-
tional[prompt_toolkit.styles.style_transformation.StyleTransformation]
= None, key_bindings: Op-
tional[prompt_toolkit.key_binding.key_bindings.KeyBindingsBase]
= None, clipboard:
Optional[prompt_toolkit.clipboard.base.Clipboard] =
None, full_screen: bool = False, color_depth: Op-
tional[Union[prompt_toolkit.output.color_depth.ColorDepth,
Callable[[], Op-
tional[prompt_toolkit.output.color_depth.ColorDepth/]]]
= None, mouse_support:
Union[prompt_toolkit.filters.base.Filter, bool] = False,
enable_page_navigation_bindings:
Optional[Union[prompt_toolkit.filters.base.Filter, bool]]
= None, paste_mode:
Union[prompt_toolkit.filters.base.Filter, bool] = False,
editing_mode: prompt_toolkit.enums.EditingMode =
EditingMode. EMACS, erase_when_done: bool = False,
reverse_vi_search_direction:
Union[prompt_toolkit.filters.base.Filter, bool] = False,
min_redraw_interval: Optional[Union[float, int]] =
None, max_render_postpone_time: Optional[Union[float,
int]] = 0.01, refresh_interval: Optional[float] = None,
terminal_size_polling_interval: Optional[float] = 0.5,
on_reset:
Optional[ApplicationEventHandler[_AppResult]] =
None, on_invalidate:
Optional[ApplicationEventHandler[_AppResult]] =
None, before_render:
Optional[ApplicationEventHandler[_AppResult]] =
None, after_render:
Optional[ApplicationEventHandler[_AppResult]] =
None, input: Optional[prompt_toolkit.input.base.Input] =
None, output:
Optional[prompt_toolkit.output.base.Output] = None)

The main Application class! This glues everything together.

Parameters
e layout — A Layout instance.
* key_bindings — KeyBindingsBase instance for the key bindings.
e clipboard - Clipboard to use.
» full_screen — When True, run the application on the alternate screen buffer.

e color_depth — Any ColorDepth value, a callable that returns a ColorDepth or None for
default.

» erase_when_done — (bool) Clear the application output when it finishes.

» reverse_vi_search_direction — Normally, in Vi mode, a */* searches forward and a *?’

88 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

searches backward. In Readline mode, this is usually reversed.

e min_redraw_interval — Number of seconds to wait between redraws. Use this for ap-
plications where invalidate is called a lot. This could cause a lot of terminal output, which
some terminals are not able to process.

None means that every invalidate will be scheduled right away (which is usually fine).

When one invalidate is called, but a scheduled redraw of a previous invalidate call has not
been executed yet, nothing will happen in any case.

* max_render_postpone_time — When there is high CPU (a lot of other scheduled calls),
postpone the rendering max x seconds. ‘0’ means: don’t postpone. ‘.5’ means: try to draw
at least twice a second.

» refresh_interval — Automatically invalidate the Ul every so many seconds. When None
(the default), only invalidate when invalidate has been called.

* terminal_size_polling_interval - Poll the terminal size every so many seconds. Use-
ful if the applications runs in a thread other then then main thread where SIGWINCH can’t
be handled, or on Windows.

Filters:
Parameters
* mouse_support — (Filter or boolean). When True, enable mouse support.
» paste_mode — Filter or boolean.
e editing_mode - EditingMode.

* enable_page_navigation_bindings — When True, enable the page navigation key bind-
ings. These include both Emacs and Vi bindings like page-up, page-down and so on to scroll
through pages. Mostly useful for creating an editor or other full screen applications. Prob-
ably, you don’t want this for the implementation of a REPL. By default, this is enabled if
full_screen is set.

Callbacks (all of these should accept an Application object as input.)
Parameters
* on_reset — Called during reset.
* on_invalidate — Called when the UI has been invalidated.
* before_render — Called right before rendering.
» after_render — Called right after rendering.

I/O: (Note that the preferred way to change the input/output is by creating an AppSession with the required
input/output objects. If you need multiple applications running at the same time, you have to create a separate
AppSession using a with create_app_session(): block.

Parameters
e input — Input instance.
* output — Output instance. (Probably Vt100_Output or Win32Output.)
Usage:
app = Application(...) app.run()

Or await app.run_async()

3.11. Reference 89

prompt;oolkit Documentation, Release3.0.23

async cancel_and_wait_for_background_tasks() — None
Cancel all background tasks, and wait for the cancellation to be done. If any of the background tasks raised
an exception, this will also propagate the exception.

(If we had nurseries like Trio, this would be the __aexit__ of a nursery.)

property color_depth: prompt_toolkit.output.color_depth.ColorDepth
The active ColorDepth.

The current value is determined as follows:
« If a color depth was given explicitly to this application, use that value.

e Otherwise, fall back to the color depth that is reported by the Output implementation. If the
Output class was created using output.defaults.create_output, then this value is coming from the
$PROMPT_TOOLKIT_COLOR_DEPTH environment variable.

cpr_not_supported_callback() — None
Called when we don’t receive the cursor position response in time.

create_background_task(coroutine: Awaitable[None]) — asyncio.Task[None]
Start a background task (coroutine) for the running application. When the Application terminates, unfin-
ished background tasks will be cancelled.

If asyncio had nurseries like Trio, we would create a nursery in Application.run_async, and run the given
coroutine in that nursery.

Not threadsafe.

property current_buffer: prompt_toolkit.buffer.Buffer
The currently focused Buffer.

(This returns a dummy Buffer when none of the actual buffers has the focus. In this case, it’s really not
practical to check for None values or catch exceptions every time.)

property current_search_state: prompt_toolkit.search.SearchState
Return the current SearchState. (The one for the focused BufferControl.)

exit() — None

exit (¥, result: prompt_toolkit.application.application._AppResult, style: str = """) — None

exit(*, exception: Union[BaseException, Type[BaseException]], style: str =""") — None
Exit application.

Note: If Application.exit is called before Application.run() is called, then the Application won’t exit (be-
cause the Application.future doesn’t correspond to the current run). Use a pre_run hook and an event to
synchronize the closing if there’s a chance this can happen.

Parameters
¢ result — Set this result for the application.

¢ exception — Set this exception as the result for an application. For a prompt, this is often
EOFError or KeyboardInterrupt.

* style — Apply this style on the whole content when quitting, often this is ‘class:exiting’
for a prompt. (Used when erase_when_done is not set.)

get_used_style_strings() — List[str]
Return a list of used style strings. This is helpful for debugging, and for writing a new Style.

90 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

invalidate() — None
Thread safe way of sending a repaint trigger to the input event loop.

property invalidated: bool
True when a redraw operation has been scheduled.

property is_running: bool
True when the application is currently active/running.

key_processor
The InputProcessor instance.

print_text (text: Optional[Union[str, MagicFormattedText, List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]], Callable[[], Any]]], style:
Optional[prompt_toolkit.styles.base.BaseStyle] = None) — None
Print a list of (style_str, text) tuples to the output. (When the UI is running, this method has to be called
through run_in_terminal, otherwise it will destroy the UI.)

Parameters
e text — List of (style_str, text) tuples.
* style — Style class to use. Defaults to the active style in the CLI.

quoted_insert
Quoted insert. This flag is set if we go into quoted insert mode.

render_counter
Render counter. This one is increased every time the Ul is rendered. It can be used as a key for caching
certain information during one rendering.

reset() — None
Reset everything, for reading the next input.

run(pre_run: Optional[Callable[[], None]] = None, set_exception_handler: bool = True, in_thread: bool =
False) — prompt_toolkit.application.application._ AppResult
A blocking ‘run’ call that waits until the Ul is finished.

This will start the current asyncio event loop. If no loop is set for the current thread, then it will create a
new loop. If a new loop was created, this won’t close the new loop (if in_thread=False).

Parameters
e pre_run — Optional callable, which is called right after the “reset” of the application.

* set_exception_handler — When set, in case of an exception, go out of the alternate
screen and hide the application, display the exception, and wait for the user to press ENTER.

e in_thread — When true, run the application in a background thread, and block the current
thread until the application terminates. This is useful if we need to be sure the application
won’t use the current event loop (asyncio does not support nested event loops). A new event
loop will be created in this background thread, and that loop will also be closed when the
background thread terminates. When this is used, it’s especially important to make sure that
all asyncio background tasks are managed through get_appp().create_background_task(),
so that unfinished tasks are properly cancelled before the event loop is closed. This is used
for instance in ptpython.

async run_async (pre_run: Optional[Callable[[], None]] = None, set_exception_handler: bool = True) —
prompt_toolkit.application.application._AppResult
Run the prompt_toolkit Application until exit () has been called. Return the value that was passed to
exit().

3.11. Reference 91

prompt;oolkit Documentation, Release3.0.23

This is the main entry point for a prompt_toolkit Application and usually the only place where the event
loop is actually running.

Parameters
e pre_run — Optional callable, which is called right after the “reset” of the application.

* set_exception_handler — When set, in case of an exception, go out of the alternate
screen and hide the application, display the exception, and wait for the user to press ENTER.

async run_system_command (command: str, wait_for_enter: bool = True, display_before_text:
Optional[Union[str, MagicFormattedlext, List[Union[Tuple[str, str],
Tuple[str, str, Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]],
Callable[[], Any]]] =", wait_text: str = 'Press ENTER to continue...") —
None

Run system command (While hiding the prompt. When finished, all the output will scroll above the prompt.)
Parameters
 command — Shell command to be executed.
e wait_for_enter — FWait for the user to press enter, when the command is finished.
» display_before_text - If given, text to be displayed before the command executes.
Returns A Future object.

suspend_to_background (suspend_group: bool = True) — None
(Not thread safe — to be called from inside the key bindings.) Suspend process.

Parameters suspend_group — When true, suspend the whole process group. (This is the de-
fault, and probably what you want.)

timeoutlen
Like Vim’s timeoutlen option. This can be None or a float. For instance, suppose that we have a key
binding AB and a second key binding A. If the uses presses A and then waits, we don’t handle this binding
yet (unless it was marked ‘eager’), because we don’t know what will follow. This timeout is the maximum
amount of time that we wait until we call the handlers anyway. Pass None to disable this timeout.

ttimeoutlen
When to flush the input (For flushing escape keys.) This is important on terminals that use vt100 input. We
can’t distinguish the escape key from for instance the left-arrow key, if we don’t know what follows after
“x1b”. This little timer will consider “x1b” to be escape if nothing did follow in this time span. This seems
to work like the #timeoutlen option in Vim.

vi_state
Vi state. (For Vi key bindings.)

class prompt_toolkit.application.DummyApplication
When no Application is running, get_app () will run an instance of this DummyApplication instead.

run(pre_run: Optional[Callable[[], None]] = None, set_exception_handler: bool = True, in_thread: bool =
False) — None
A blocking ‘run’ call that waits until the Ul is finished.

This will start the current asyncio event loop. If no loop is set for the current thread, then it will create a
new loop. If a new loop was created, this won’t close the new loop (if in_thread=False).

Parameters
» pre_run — Optional callable, which is called right after the “reset” of the application.

* set_exception_handler — When set, in case of an exception, go out of the alternate
screen and hide the application, display the exception, and wait for the user to press ENTER.

92 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

e in_thread — When true, run the application in a background thread, and block the current
thread until the application terminates. This is useful if we need to be sure the application
won’t use the current event loop (asyncio does not support nested event loops). A new event
loop will be created in this background thread, and that loop will also be closed when the
background thread terminates. When this is used, it’s especially important to make sure that
all asyncio background tasks are managed through get_appp().create_background_task(),
so that unfinished tasks are properly cancelled before the event loop is closed. This is used
for instance in ptpython.

async run_async (pre_run: Optional[Callable[[], None]] = None, set_exception_handler: bool = True) —
None
Run the prompt_toolkit Application until exit () has been called. Return the value that was passed to
exit().

This is the main entry point for a prompt_toolkit Application and usually the only place where the event
loop is actually running.

Parameters
» pre_run — Optional callable, which is called right after the “reset” of the application.

* set_exception_handler — When set, in case of an exception, go out of the alternate
screen and hide the application, display the exception, and wait for the user to press ENTER.

async run_system_command (command: str, wait_for_enter: bool = True, display_before_text:
Optional[Union[str, MagicFormattedText, List[Union[Tuple[str, str],
Tuple[str, str, Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]],
Callable[[], Any]]] =", wait_text: str =") — None
Run system command (While hiding the prompt. When finished, all the output will scroll above the prompt.)

Parameters
» command — Shell command to be executed.
» wait_for_enter — FWiait for the user to press enter, when the command is finished.
» display_before_text - If given, text to be displayed before the command executes.
Returns A Future object.

suspend_to_background (suspend_group: bool = True) — None
(Not thread safe — to be called from inside the key bindings.) Suspend process.

Parameters suspend_group — When true, suspend the whole process group. (This is the de-
fault, and probably what you want.)

prompt_toolkit.application.create_app_session(input: Optional[Input] = None, output:
Optional[Output] = None) — Genera-
tor[prompt_toolkit.application.current.AppSession,
None, None]
Create a separate AppSession.

This is useful if there can be multiple individual *AppSession’s going on. Like in the case of an Telnet/SSH
server. This functionality uses contextvars and requires at least Python 3.7.

prompt_toolkit.application.get_app() — Application[Any]
Get the current active (running) Application. An Application is active during the Application.
run_async() call.

We assume that there can only be one Application active at the same time. There is only one terminal window,
with only one stdin and stdout. This makes the code significantly easier than passing around the Application
everywhere.

3.11. Reference 93

prompt;oolkit Documentation, Release3.0.23

If no Application is running, then return by default a DummyApplication. For practical reasons, we prefer
to not raise an exception. This way, we don’t have to check all over the place whether an actual Application was
returned.

(For applications like pymux where we can have more than one Application, we’ll use a work-around to handle
that.)

prompt_toolkit.application.get_app_or_none() — Optional[Application[Any]]
Get the current active (running) Application, or return None if no application is running.

prompt_toolkit.application.in_terminal (render_cli_done: bool = False) — AsyncGenerator[None, None]
Asynchronous context manager that suspends the current application and runs the body in the terminal.

async def f(Q):
async with in_terminal():
call_some_function()
await call_some_async_function()

prompt_toolkit.application.run_in_terminal (func: Callable[[],
prompt_toolkit.application.run_in_terminal._T],
render_cli_done: bool = False, in_executor: bool = False)
_)
Awaitable[prompt_toolkit.application.run_in_terminal._T]
Run function on the terminal above the current application or prompt.

What this does is first hiding the prompt, then running this callable (which can safely output to the terminal), and
then again rendering the prompt which causes the output of this function to scroll above the prompt.

func is supposed to be a synchronous function. If you need an asynchronous version of this function, use the
in_terminal context manager directly.

Parameters
» func — The callable to execute.

* render_cli_done — When True, render the interface in the ‘Done’ state first, then execute
the function. If False, erase the interface first.

e in_executor — When True, run in executor. (Use this for long blocking functions, when
you don’t want to block the event loop.)

Returns A Future.

prompt_toolkit.application.set_app(app: Application/Any]) — Generator[None, None, None]
Context manager that sets the given Application active in an AppSession.

This should only be called by the Application itself. The application will automatically be active while its run-
ning. If you want the application to be active in other threads/coroutines, where that’s not the case, use con-
textvars.copy_context(), or use Application.context to run it in the appropriate context.

94 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

3.11.2 Formatted text

Many places in prompt_toolkit can take either plain text, or formatted text. For instance the prompt () function takes
either plain text or formatted text for the prompt. The FormattedTextControl can also take either plain text or
formatted text.

In any case, there is an input that can either be just plain text (a string), an HTML object, an ANSI object or a sequence
of (style_string, text) tuples. The to_formatted_text () conversion function takes any of these and turns all of them
into such a tuple sequence.

class prompt_toolkit.formatted_text.ANSI (value: str)
ANSI formatted text. Take something ANSI escaped text, for use as a formatted string. E.g.

ANST('\x1b[31mhello \x1b[32mworld')

Characters between \001 and \002 are supposed to have a zero width when printed, but these are literally sent
to the terminal output. This can be used for instance, for inserting Final Term prompt commands. They will be
translated into a prompt_toolkit ‘[ZeroWidthEscape]” fragment.

format (*args: str, **kwargs: str) — prompt_toolkit.formatted_text.ansi. ANSI
Like str.format, but make sure that the arguments are properly escaped. (No ANSI escapes can be injected.)

class prompt_toolkit.formatted_text.FormattedText (iterable=(),/)
A list of (style, text) tuples.

(In some situations, this can also be (style, text, mouse_handler) tuples.)

class prompt_toolkit.formatted_text.HTML (value: str)
HTML formatted text. Take something HTML-like, for use as a formatted string.

Turn something into red.
HTML('<style fg="ansired" bg="#00ff44">...</style>")

Italic, bold, underline and strike.
HTML('<i>...</i>")
HTML('...")
HTML('<u>. ..</u>")
HTML('<s>...</s>")

All HTML elements become available as a “class” in the style sheet. E.g. <username>...</username> can
be styled, by setting a style for username.

format (*args: object, **kwargs: object) — prompt_toolkit.formatted_text.html. HTML
Like str.format, but make sure that the arguments are properly escaped.

class prompt_toolkit.formatted_text.PygmentsTokens (foken_list: List[Tuple[Token, str]])
Turn a pygments token list into a list of prompt_toolkit text fragments ((style_str, text) tuples).

class prompt_toolkit.formatted_text.Template(rext: str)
Template for string interpolation with formatted text.

Example:

Template(' ").format(HTML(...))

Parameters text — Plain text.

3.11. Reference 95

prompt;oolkit Documentation, Release3.0.23

prompt_toolkit.formatted_text.fragment_list_len(fragments: List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]]) — int
Return the amount of characters in this text fragment list.

Parameters fragments - List of (style_str, text) or (style_str, text,
mouse_handler) tuples.

prompt_toolkit.formatted_text.fragment_list_to_text (fragments: List[Union[Tuple[str, str], Tuple[str,
str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
Nonel]]]) — str
Concatenate all the text parts again.

Parameters fragments - List of (style_str, text) or (style_str, text,
mouse_handler) tuples.

prompt_toolkit.formatted_text.fragment_list_width(fragments: List/Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]]) — int
Return the character width of this text fragment list. (Take double width characters into account.)

Parameters fragments - List of (style_str, text) or (style_str, text,
mouse_handler) tuples.

prompt_toolkit.formatted_text.is_formatted_text(value: object) — TypeGuard[AnyFormattedText]
Check whether the input is valid formatted text (for use in assert statements). In case of a callable, it doesn’t
check the return type.

prompt_toolkit.formatted_text.merge_formatted_text(items: Iterable[Optional[Union/str,
MagicFormattedText, List[Union[Tuple[str, str],
Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]]]) —
Optional[Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
Nonel]]]], Callable[[], Any]]]

Merge (Concatenate) several pieces of formatted text together.

prompt_toolkit.formatted_text.split_lines(fragments: List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]]) — Iterable[List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]]]
Take a single list of (style_str, text) tuples and yield one such list for each line. Just like str.split, this will yield
at least one item.

Parameters fragments — List of (style_str, text) or (style_str, text, mouse_handler) tuples.

prompt_toolkit.formatted_text.to_formatted_text (value: Optional[Union[str, MagicFormattedText,
List{Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]], style: str =",
auto_convert: bool = False) — FormattedText
Convert the given value (which can be formatted text) into a list of text fragments. (Which is the canonical form
of formatted text.) The outcome is always a FormattedText instance, which is a list of (style, text) tuples.

96 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

It can take a plain text string, an HTML or ANSI object, anything that implements __pt_formatted_text__ or a
callable that takes no arguments and returns one of those.

Parameters

3.11.3 Buffer

style — An additional style string which is applied to all text fragments.

auto_convert — If True, also accept other types, and convert them to a string first.

Data structures for the Buffer. It holds the text, cursor position, history, etc...

class prompt_toolkit.buffer.Buffer(completer: Optional[prompt_toolkit.completion.base.Completer] =

None, auto_suggest:

Optional[prompt_toolkit.auto_suggest. AutoSuggest] = None, history:
Optional[prompt_toolkit.history.History] = None, validator:
Optional[prompt_toolkit.validation.Validator] = None, tempfile_suffix:
Union[str, Callable[[], str]] =", tempfile: Union[str, Callable[[], str]]
=", name: str =", complete_while_typing:
Union[prompt_toolkit.filters.base.Filter, bool] = False,
validate_while_typing: Union[prompt_toolkit.filters.base.Filter, bool]
= False, enable_history_search:
Union[prompt_toolkit.filters.base.Filter, bool] = False, document:
Optional[prompt_toolkit.document.Document] = None,
accept_handler: Optional[Callable[[prompt_toolkit.buffer.Buffer],
bool]] = None, read_only: Union[prompt_toolkit.filters.base.Filter,
bool] = False, multiline: Union[prompt_toolkit.filters.base.Filter,
bool] = True, on_text_changed:
Optional[Callable[[prompt_toolkit.buffer.Buffer], None]] = None,
on_text_insert: Optional[Callable[[prompt_toolkit.buffer.Buffer],
None]] = None, on_cursor_position_changed:

Optional[Callable[[prompt_toolkit.buffer.Buffer], None]] = None,
on_completions_changed:

Optional[Callable[[prompt_toolkit.buffer.Buffer], None]] = None,
on_suggestion_set: Optional[Callable[[prompt_toolkit.buftfer.Buffer],
None]] = None)

The core data structure that holds the text and cursor position of the current input line and implements all text
manipulations on top of it. It also implements the history, undo stack and the completion state.

Parameters

completer — Completer instance.
history — History instance.

tempfile_suffix - The tempfile suffix (extension) to be used for the “open in editor” func-
tion. For a Python REPL, this would be “.py”, so that the editor knows the syntax highlighting
to use. This can also be a callable that returns a string.

tempfile - For more advanced tempfile situations where you need control over the subdirec-
tories and filename. For a Git Commit Message, this would be “.git/COMMIT_EDITMSG”,
so that the editor knows the syntax highlighting to use. This can also be a callable that returns
a string.

name — Name for this buffer. E.g. DEFAULT_BUFFER. This is mostly useful for key bind-
ings where we sometimes prefer to refer to a buffer by their name instead of by reference.

3.11. Reference

97

prompt;oolkit Documentation, Release3.0.23

» accept_handler - Called when the buffer input is accepted. (Usually when the user presses
enter.) The accept handler receives this Buffer as input and should return True when the
buffer text should be kept instead of calling reset.

In case of a PromptSession for instance, we want to keep the text, because we will exit the
application, and only reset it during the next run.

Events:
Parameters
» on_text_changed — When the buffer text changes. (Callable or None.)
e on_text_insert — When new text is inserted. (Callable or None.)
e on_cursor_position_changed — When the cursor moves. (Callable or None.)
* on_completions_changed — When the completions were changed. (Callable or None.)
* on_suggestion_set — When an auto-suggestion text has been set. (Callable or None.)
Filters:
Parameters

» complete_while_typing — Filter or bool. Decide whether or not to do asynchronous
autocompleting while typing.

e validate_while_typing — Filter or bool. Decide whether or not to do asynchronous
validation while typing.

* enable_history_search — Filter or bool to indicate when up-arrow partial string
matching is enabled. It is advised to not enable this at the same time as com-
plete_while_typing, because when there is an autocompletion found, the up arrows usually
browse through the completions, rather than through the history.

* read_only — Filter. When True, changes will not be allowed.

e multiline — Filter or bool. When not set, pressing Enfer will call the accept_handler.
Otherwise, pressing Esc-Enter is required.

append_to_history() — None
Append the current input to the history.

apply_completion(completion: prompt_toolkit.completion.base.Completion) — None
Insert a given completion.

apply_search (search_state: prompt_toolkit.search.SearchState, include_current_position: bool = True,
count: int = 1) — None
Apply search. If something is found, set working_index and cursor_position.

auto_down (count: int = 1, go_to_start_of _line_if_history_changes: bool = False) — None
If we’re not on the last line (of a multiline input) go a line down, otherwise go forward in history. (If nothing
is selected.)

auto_up (count: int = 1, go_to_start_of _line_if _history_changes: bool = False) — None
If we’re not on the first line (of a multiline input) go a line up, otherwise go back in history. (If nothing is
selected.)

cancel_completion() — None
Cancel completion, go back to the original text.

complete_next (count: int = 1, disable_wrap_around: bool = False) — None
Browse to the next completions. (Does nothing if there are no completion.)

98 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

complete_previous (count: int = 1, disable_wrap_around: bool = False) — None
Browse to the previous completions. (Does nothing if there are no completion.)

copy_selection(_cut: bool = False) — prompt_toolkit.clipboard.base.ClipboardData

Copy selected text and return CI1ipboardData instance.

Notice that this doesn’t store the copied data on the clipboard yet. You can store it like this:

data = buffer.copy_selection()
get_app() .clipboard.set_data(data)

cursor_down (count: int = 1) — None
(for multiline edit). Move cursor to the next line.

cursor_up (count: int = 1) — None
(for multiline edit). Move cursor to the previous line.

cut_selection() — prompt_toolkit.clipboard.base.ClipboardData

Delete selected text and return C1ipboardData instance.

delete(count: int=1) — str

Delete specified number of characters and Return the deleted text.

delete_before_cursor (count: int = 1) — str

Delete specified number of characters before cursor and return the deleted text.

property document: prompt_toolkit.document.Document

Return Document instance from the current text, cursor position and selection state.

document_for_search(search_state: prompt_toolkit.search.SearchState) —

prompt_toolkit.document. Document

Return a Document instance that has the text/cursor position for this search, if we would apply it. This will

be used in the BufferControl to display feedback while searching.

get_search_position(search_state: prompt_toolkit.search.SearchState, include_current_position: bool =

True, count: int = 1) — int

Get the cursor position for this search. (This operation won’t change the working_index. It’s won’t go

through the history. Vi text objects can’t span multiple items.)

go_to_completion(index: Optionalfint]) — None
Select a completion from the list of current completions.

go_to_history(index: int) — None
Go to this item in the history.

history_backward(count: int = 1) — None
Move backwards through history.

history_forward(count: int = 1) — None
Move forwards through the history.

Parameters count — Amount of items to move forward.

insert_line_above(copy_margin: bool = True) — None
Insert a new line above the current one.

insert_line_below(copy_margin: bool = True) — None
Insert a new line below the current one.

insert_text (data: str, overwrite: bool = False, move_cursor: bool = True, fire_event: bool = True) —

None
Insert characters at cursor position.

3.11.

Reference

99

prompt;oolkit Documentation, Release3.0.23

Parameters fire_event — Fire on_text_insert event. This is mainly used to trigger autocom-
pletion while typing.

property is_returnable: bool
True when there is something handling accept.

join_next_line(separator: str="'") — None
Join the next line to the current one by deleting the line ending after the current line.

join_selected_lines(separator: str="") — None
Join the selected lines.

load_history_if_not_yet_loaded() — None
Create task for populating the buffer history (if not yet done).

Note:

This needs to be called from within the event loop of the
application, because history loading is async, and we need to be
sure the right event loop is active. Therefor, we call this method
in the “BufferControl.create_content .

There are situations where prompt_toolkit applications are created
in one thread, but will later run in a different thread (Ptpython
is one example. The REPL runs in a separate thread, in order to
prevent interfering with a potential different event loop in the
main thread. The REPL UI however is still created in the main
thread.) We could decide to not support creating prompt_toolkit
objects in one thread and running the application in a different
thread, but history loading is the only place where it matters, and
this solves it.

newline (copy_margin: bool = True) — None
Insert a line ending at the current position.

open_in_editor (validate_and_handle: bool = False) — asyncio.Task[None]
Open code in editor.

This returns a future, and runs in a thread executor.

paste_clipboard_data(data: prompt_toolkit.clipboard.base.ClipboardData, paste_mode:
prompt_toolkit.selection.PasteMode = PasteMode. EMACS, count: int=1) —
None
Insert the data from the clipboard.

reset (document: Optional[prompt_toolkit.document.Document] = None, append_to_history: bool = False)
— None

Parameters append_to_history — Append current input to history first.

save_to_undo_stack(clear_redo_stack: bool = True) — None
Safe current state (input text and cursor position), so that we can restore it by calling undo.

set_document (value: prompt_toolkit.document.Document, bypass_readonly: bool = False) — None
Set Document instance. Like the document property, but accept an bypass_readonly argument.

Parameters bypass_readonly — When True, don’t raise an EditReadOnlyBuffer exception,
even when the buffer is read-only.

100 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

Warning: When this buffer is read-only and bypass_readonly was not passed, the EditReadOnlyBuffer
exception will be caught by the KeyProcessor and is silently suppressed. This is important to keep in
mind when writing key bindings, because it won’t do what you expect, and there won’t be a stack trace.
Use try/finally around this function if you need some cleanup code.

start_completion(select first: bool = False, select_last: bool = False, insert_common_part: bool = False,
complete_event: Optional[prompt_toolkit.completion.base.CompleteEvent] = None) —
None
Start asynchronous autocompletion of this buffer. (This will do nothing if a previous completion was still
in progress.)

start_history_lines_completion() — None
Start a completion based on all the other lines in the document and the history.

start_selection(selection_type: prompt_toolkit.selection.SelectionType = SelectionType. CHARACTERS)
— None
Take the current cursor position as the start of this selection.

swap_characters_before_cursor() — None
Swap the last two characters before the cursor.

transform_current_line (transform_callback: Callable[[str], str]) — None
Apply the given transformation function to the current line.

Parameters transform_callback — callable that takes a string and return a new string.

transform_lines (line_index_iterator: Iterable[int], transform_callback: Callable[[str], str]) — str
Transforms the text on a range of lines. When the iterator yield an index not in the range of lines that the
document contains, it skips them silently.

To uppercase some lines:

new_text = transform_lines(range(5,10), lambda text: text.upper())

Parameters
¢ line_index_iterator — Iterator of line numbers (int)

¢ transform_callback — callable that takes the original text of a line, and return the new
text for this line.

Returns The new text.
transform_region(from_: int, to: int, transform_callback: Callable[[str], str]) — None
Transform a part of the input string.
Parameters
» from — (int) start position.
* to — (int) end position.

e transform_callback — Callable which accepts a string and returns the transformed
string.

validate(setr_cursor: bool = False) — bool
Returns True if valid.

Parameters set_cursor — Set the cursor position, if an error was found.

3.11. Reference 101

prompt;oolkit Documentation, Release3.0.23

validate_and_handle() — None
Validate buffer and handle the accept action.

yank_last_arg(n: Optional[int] = None) — None
Like yank_nth_arg, but if no argument has been given, yank the last word by default.

yank_nth_arg(n: Optional[int] = None, _yank_last_arg: bool = False) — None
Pick nth word from previous history entry (depending on current yank_nth_arg_state) and insert it at current
position. Rotate through history if called repeatedly. If no n has been given, take the first argument. (The
second word.)

Parameters n — (None or int), The index of the word from the previous line to take.

class prompt_toolkit.buffer.CompletionState (original_document: prompt_toolkit.document.Document,
completions: Op-
tional[List[prompt_toolkit.completion.base.Completion]]
= None, complete_index: Optional[int] = None)
Immutable class that contains a completion state.

complete_index
Position in the completions array. This can be None to indicate “no completion”, the original text.

completions
List of all the current Completion instances which are possible at this point.

property current_completion: Optional[prompt_toolkit.completion.base.Completion]
Return the current completion, or return None when no completion is selected.

go_to_index (index: Optional[int]) — None
Create a new CompletionState object with the new index.

When index is None deselect the completion.

new_text_and_position() — Tuple[str, int]
Return (new_text, new_cursor_position) for this completion.

original_document
Document as it was when the completion started.

exception prompt_toolkit.buffer.EditReadOnlyBuffer
Attempt editing of read-only Buffer.

prompt_toolkit.buffer.indent (buffer: prompt_toolkit.bufter.Buffer, from_row: int, to_row: int, count: int =
1) — None
Indent text of a Buffer object.

prompt_toolkit.buffer.reshape_text (buffer: prompt_toolkit.buffer.Buffer, from_row: int, to_row: int) —
None
Reformat text, taking the width into account. to_row is included. (Vi ‘gq’ operator.)

prompt_toolkit.buffer.unindent (buffer: prompt_toolkit.buffer.Buffer, from_row: int, to_row: int, count: int =
1) — None
Unindent text of a Buffer object.

102 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

3.11.4 Selection

Data structures for the selection.

class prompt_toolkit.selection.PasteMode (value)
An enumeration.

class prompt_toolkit.selection.SelectionState(original_cursor_position: int =0, type:
prompt_toolkit.selection.SelectionType =
SelectionType. CHARACTERS)
State of the current selection.

Parameters
e original_cursor_position - int
* type — SelectionType

class prompt_toolkit.selection.SelectionType (value)
Type of selection.

BLOCK = 'BLOCK'
A block selection. (Visual-Block in Vi.)

CHARACTERS = 'CHARACTERS'
Characters. (Visual in Vi.)

LINES = 'LINES'
Whole lines. (Visual-Line in Vi.)

3.11.5 Clipboard

class prompt_toolkit.clipboard.Clipboard
Abstract baseclass for clipboards. (An implementation can be in memory, it can share the X11 or Windows
keyboard, or can be persistent.)

abstract get_data() — prompt_toolkit.clipboard.base.ClipboardData
Return clipboard data.

rotate() — None
For Emacs mode, rotate the kill ring.

abstract set_data(data: prompt_toolkit.clipboard.base.ClipboardData) — None
Set data to the clipboard.

Parameters data — ClipboardData instance.

set_text (text: str) — None
Shortcut for setting plain text on clipboard.

class prompt_toolkit.clipboard.ClipboardData (fext: str =", type: prompt_toolkit.selection.SelectionType
= SelectionType. CHARACTERS)
Text on the clipboard.

Parameters
* text —string
* type — SelectionType

class prompt_toolkit.clipboard.DummyClipboard
Clipboard implementation that doesn’t remember anything.

3.11. Reference 103

prompt;oolkit Documentation, Release3.0.23

get_data() — prompt_toolkit.clipboard.base.ClipboardData
Return clipboard data.

rotate() — None
For Emacs mode, rotate the kill ring.

set_data(data: prompt_toolkit.clipboard.base.ClipboardData) — None
Set data to the clipboard.

Parameters data — ClipboardData instance.

set_text (text: str) — None
Shortcut for setting plain text on clipboard.

class prompt_toolkit.clipboard.DynamicClipboard(ger_clipboard: Callable[[],
Optional[prompt_toolkit.clipboard.base.Clipboard]])
Clipboard class that can dynamically returns any Clipboard.

Parameters get_clipboard — Callable that returns a C1ipboard instance.

get_data() — prompt_toolkit.clipboard.base.ClipboardData
Return clipboard data.

rotate() — None
For Emacs mode, rotate the kill ring.

set_data(data: prompt_toolkit.clipboard.base.ClipboardData) — None
Set data to the clipboard.

Parameters data — ClipboardData instance.

set_text (text: str) — None
Shortcut for setting plain text on clipboard.

class prompt_toolkit.clipboard.InMemoryClipboard(data: Op-
tional[prompt_toolkit.clipboard.base.ClipboardData]
= None, max_size: int = 60)
Default clipboard implementation. Just keep the data in memory.

This implements a kill-ring, for Emacs mode.

get_data() — prompt_toolkit.clipboard.base.ClipboardData
Return clipboard data.

rotate() — None
For Emacs mode, rotate the kill ring.

set_data(data: prompt_toolkit.clipboard.base.ClipboardData) — None
Set data to the clipboard.

Parameters data — ClipboardData instance.

class prompt_toolkit.clipboard.pyperclip.PyperclipClipboard
Clipboard that synchronizes with the Windows/Mac/Linux system clipboard, using the pyperclip module.

get_data() — prompt_toolkit.clipboard.base.ClipboardData
Return clipboard data.

set_data(data: prompt_toolkit.clipboard.base.ClipboardData) — None
Set data to the clipboard.

Parameters data — ClipboardData instance.

104 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

3.11.6 Auto completion

class prompt_toolkit.completion.CompleteEvent (text_inserted: bool = False, completion_requested: bool
= False)
Event that called the completer.

Parameters

* text_inserted — When True, it means that completions are requested because of a text
insert. (Buffer.complete_while_typing.)

» completion_requested — When True, it means that the user explicitly pressed the Tab key
in order to view the completions.

These two flags can be used for instance to implement a completer that shows some completions when Tab has
been pressed, but not automatically when the user presses a space. (Because of complete_while_typing.)

completion_requested
Used explicitly requested completion by pressing ‘tab’.

text_inserted
Automatic completion while typing.

class prompt_toolkit.completion.Completer
Base class for completer implementations.

abstract get_completions(document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
Iterable[prompt_toolkit.completion.base. Completion]
This should be a generator that yields Completion instances.

If the generation of completions is something expensive (that takes a lot of time), consider wrapping this
Completer class in a ThreadedCompleter. In that case, the completer algorithm runs in a background thread
and completions will be displayed as soon as they arrive.

Parameters
¢ document — Document instance.
e complete_event — CompleteEvent instance.

get_completions_async (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
AsyncGenerator[prompt_toolkit.completion.base. Completion, None]
Asynchronous generator for completions. (Probably, you won’t have to override this.)

Asynchronous generator of CompIletion objects.

class prompt_toolkit.completion.Completion(zext: str, start_position: int = 0, display:
Optional[Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]] = None, display_meta:
Optional[Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]] = None, style: str=",
selected_style: str="")

Parameters

3.11. Reference 105

prompt;oolkit Documentation, Release3.0.23

* text — The new string that will be inserted into the document.

* start_position - Position relative to the cursor_position where the new text will start.
The text will be inserted between the start_position and the original cursor position.

» display - (optional string or formatted text) If the completion has to be displayed differently
in the completion menu.

» display_meta - (Optional string or formatted text) Meta information about the completion,
e.g. the path or source where it’s coming from. This can also be a callable that returns a
string.

» style - Style string.
» selected_style - Style string, used for a selected completion. This can override the style

parameter.

property display_meta: List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]]
Return meta-text. (This is lazy when using a callable).

property display_meta_text: str
The ‘meta’ field as plain text.

property display_text: str
The ‘display’ field as plain text.

new_completion_from_position(position: int) — prompt_toolkit.completion.base.Completion
(Only for internal use!) Get a new completion by splitting this one. Used by Application when it needs to
have a list of new completions after inserting the common prefix.

class prompt_toolkit.completion.ConditionalCompleter (completer:

prompt_toolkit.completion.base.Completer,
filter: Union[prompt_toolkit.filters.base.Filter,
bool])
Wrapper around any other completer that will enable/disable the completions depending on whether the received
condition is satisfied.

Parameters
e completer — Completer instance.
e filter — Filter instance.

get_completions (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
Iterable[prompt_toolkit.completion.base. Completion]
This should be a generator that yields Completion instances.

If the generation of completions is something expensive (that takes a lot of time), consider wrapping this
Completer class in a ThreadedCompleter. In that case, the completer algorithm runs in a background thread
and completions will be displayed as soon as they arrive.

Parameters
¢ document — Document instance.
e complete_event — CompleteEvent instance.

get_completions_async (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
AsyncGenerator[prompt_toolkit.completion.base. Completion, None]
Asynchronous generator for completions. (Probably, you won’t have to override this.)

106

Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

Asynchronous generator of CompIletion objects.

class prompt_toolkit.completion.DeduplicateCompleter (completer:

prompt_toolkit.completion.base.Completer)
Wrapper around a completer that removes duplicates. Only the first unique completions are kept.

Completions are considered to be a duplicate if they result in the same document text when they would be applied.

get_completions (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
Iterable[prompt_toolkit.completion.base. Completion)
This should be a generator that yields Completion instances.

If the generation of completions is something expensive (that takes a lot of time), consider wrapping this
Completer class in a ThreadedCompleter. In that case, the completer algorithm runs in a background thread
and completions will be displayed as soon as they arrive.

Parameters
¢ document — Document instance.
e complete_event — CompleteEvent instance.

class prompt_toolkit.completion.DummyCompleter
A completer that doesn’t return any completion.

get_completions (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
Iterable[prompt_toolkit.completion.base. Completion]
This should be a generator that yields Completion instances.

If the generation of completions is something expensive (that takes a lot of time), consider wrapping this
Completer class in a ThreadedCompleter. In that case, the completer algorithm runs in a background thread
and completions will be displayed as soon as they arrive.

Parameters
¢ document — Document instance.
e complete_event — CompleteEvent instance.

class prompt_toolkit.completion.DynamicCompleter (get_completer: Callable[[], Op-

tional[prompt_toolkit.completion.base.Completer/])
Completer class that can dynamically returns any Completer.

Parameters get_completer — Callable that returns a Completer instance.

get_completions (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
Iterable[prompt_toolkit.completion.base. Completion]
This should be a generator that yields Completion instances.

If the generation of completions is something expensive (that takes a lot of time), consider wrapping this
Completer class in a ThreadedCompleter. In that case, the completer algorithm runs in a background thread
and completions will be displayed as soon as they arrive.

Parameters
¢ document — Document instance.

e complete_event — CompleteEvent instance.

3.11. Reference 107

prompt;oolkit Documentation, Release3.0.23

get_completions_async (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
AsyncGenerator[prompt_toolkit.completion.base. Completion, None]
Asynchronous generator for completions. (Probably, you won’t have to override this.)

Asynchronous generator of Completion objects.

class prompt_toolkit.completion.ExecutableCompleter
Complete only executable files in the current path.

class prompt_toolkit.completion.FuzzyCompleter (completer: prompt_toolkit.completion.base.Completer,
WORD: bool = False, pattern: Optional[str] = None,
enable_fuzzy: Union[prompt_toolkit.filters.base.Filter,
bool] = True)
Fuzzy completion. This wraps any other completer and turns it into a fuzzy completer.

CLIT3

If the list of words is: [“leopard” , “gorilla”, “dinosaur”, “cat”, “bee”’] Then trying to complete “oar” would yield
“leopard” and “dinosaur”, but not the others, because they match the regular expression ‘o.*a.*r’. Similar, in
another application “djm” could expand to “django_migrations”.

The results are sorted by relevance, which is defined as the start position and the length of the match.

Notice that this is not really a tool to work around spelling mistakes, like what would be possible with difflib.
The purpose is rather to have a quicker or more intuitive way to filter the given completions, especially when
many completions have a common prefix.

Fuzzy algorithm is based on this post: https://blog.amjith.com/fuzzyfinder-in-10-lines-of-python
Parameters
e completer — A Completer instance.
¢ WORD — When True, use WORD characters.

* pattern — Regex pattern which selects the characters before the cursor that are considered
for the fuzzy matching.

» enable_fuzzy - (bool or Filter) Enabled the fuzzy behavior. For easily turning fuzzyness
on or off according to a certain condition.

get_completions (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
Iterable[prompt_toolkit.completion.base. Completion]
This should be a generator that yields Completion instances.

If the generation of completions is something expensive (that takes a lot of time), consider wrapping this
Completer class in a ThreadedCompleter. In that case, the completer algorithm runs in a background thread
and completions will be displayed as soon as they arrive.

Parameters
¢ document — Document instance.
e complete_event — CompleteEvent instance.

class prompt_toolkit.completion.FuzzyWordCompleter (words: Union[List[str], Callable[[], List[str]]],
meta_dict: Optional[Dict[str, str]] = None,
WORD: bool = False)
Fuzzy completion on a list of words.

(This is basically a WordCompleter wrapped in a FuzzyCompleter.)

Parameters

108 Chapter 3. Table of contents

https://blog.amjith.com/fuzzyfinder-in-10-lines-of-python

prompt;oolkit Documentation, Release3.0.23

e words — List of words or callable that returns a list of words.
* meta_dict — Optional dict mapping words to their meta-information.
e WORD — When True, use WORD characters.

get_completions (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
Iterable[prompt_toolkit.completion.base. Completion]
This should be a generator that yields Completion instances.

If the generation of completions is something expensive (that takes a lot of time), consider wrapping this
Completer class in a ThreadedCompleter. In that case, the completer algorithm runs in a background thread
and completions will be displayed as soon as they arrive.

Parameters
¢ document — Document instance.
e complete_event — CompleteEvent instance.

class prompt_toolkit.completion.NestedCompleter (options: Dict[str, Op-
tional[prompt_toolkit.completion.base.Completer/],
ignore_case: bool = True)
Completer which wraps around several other completers, and calls any the one that corresponds with the first
word of the input.

By combining multiple NestedCompleter instances, we can achieve multiple hierarchical levels of autocomple-
tion. This is useful when WordCompleter is not sufficient.

If you need multiple levels, check out the from_nested_dict classmethod.

classmethod from_nested_dict (data: Mapping|[str, Union[Any, Set[str], None,
prompt_toolkit.completion.base.Completer/]/) —
prompt_toolkit.completion.nested.NestedCompleter
Create a NestedCompleter, starting from a nested dictionary data structure, like this:

data = {
'show': {
'version': None,
'interfaces': None,
'clock': None,
'ip': {'interface': {'brief'}}
1,
'exit': None
'enable': None

The value should be None if there is no further completion at some point. If all values in the dictionary are
None, it is also possible to use a set instead.

Values in this data structure can be a completers as well.

get_completions (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
Iterable[prompt_toolkit.completion.base. Completion]
This should be a generator that yields Completion instances.

If the generation of completions is something expensive (that takes a lot of time), consider wrapping this
Completer class in a ThreadedCompleter. In that case, the completer algorithm runs in a background thread
and completions will be displayed as soon as they arrive.

3.11. Reference 109

prompt;oolkit Documentation, Release3.0.23

Parameters
¢ document — Document instance.
e complete_event — CompleteEvent instance.

class prompt_toolkit.completion.PathCompleter (only_directories: bool = False, get_paths:
Optional[Callable[[], List[str]]] = None, file_filter:
Optional[Callable[[str], bool]] = None, min_input_len:
int = 0, expanduser: bool = False)
Complete for Path variables.

Parameters

e get_paths — Callable which returns a list of directories to look into when the user enters a
relative path.

e file_filter — Callable which takes a filename and returns whether this file should show
up in the completion. None when no filtering has to be done.

* min_input_len — Don’t do autocompletion when the input string is shorter.

get_completions (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
Iterable[prompt_toolkit.completion.base. Completion]
This should be a generator that yields Completion instances.

If the generation of completions is something expensive (that takes a lot of time), consider wrapping this
Completer class in a ThreadedCompleter. In that case, the completer algorithm runs in a background thread
and completions will be displayed as soon as they arrive.

Parameters
¢ document — Document instance.
e complete_event — CompleteEvent instance.

class prompt_toolkit.completion.ThreadedCompleter (completer:
prompt_toolkit.completion.base.Completer)
Wrapper that runs the ger_completions generator in a thread.

(Use this to prevent the user interface from becoming unresponsive if the generation of completions takes too
much time.)

The completions will be displayed as soon as they are produced. The user can already select a completion, even
if not all completions are displayed.

get_completions (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
Iterable[prompt_toolkit.completion.base. Completion]
This should be a generator that yields Completion instances.

If the generation of completions is something expensive (that takes a lot of time), consider wrapping this
Completer class in a ThreadedCompleter. In that case, the completer algorithm runs in a background thread
and completions will be displayed as soon as they arrive.

Parameters
¢ document — Document instance.

e complete_event — CompleteEvent instance.

110 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

get_completions_async (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
AsyncGenerator[prompt_toolkit.completion.base. Completion, None]

Asynchronous generator of completions.

class prompt_toolkit.completion.WordCompleter (words: Union[List[str], Callable[[], List[str]]],

Simple autocompletion on a list of words.

Parameters

ignore_case: bool = False, display_dict:
Optional[Mapping[str, Optional[Union/str,
MagicFormattedText, List[Union[Tuple[str, str],
Tuple/str, str,

Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]]]] = None, meta_dict:
Optional[Mapping[str, Optional[Union/str,
MagicFormattedText, List[Union[Tuple[str, str],
Tuple[str, str,

Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]]]] = None, WORD: bool =
False, sentence: bool = False, match_middle: bool =
False, pattern: Optional[Pattern[str]] = None)

e words — List of words or callable that returns a list of words.

» ignore_case - If True, case-insensitive completion.

» meta_dict — Optional dict mapping words to their meta-text. (This should map strings to

strings or formatted text.)

¢ WORD — When True, use WORD characters.

sentence — When True, don’t complete by comparing the word before the cursor, but by

comparing all the text before the cursor. In this case, the list of words is just a list of strings,
where each string can contain spaces. (Can not be used together with the WORD option.)

match_middle — When True, match not only the start, but also in the middle of the word.

* pattern — Optional compiled regex for finding the word before the cursor to com-
plete. When given, use this regex pattern instead of default one (see docu-

ment._FIND_WORD_RE)

get_completions (document: prompt_toolkit.document.Document, complete_event:
prompt_toolkit.completion.base.CompleteEvent) —
Iterable[prompt_toolkit.completion.base. Completion]
This should be a generator that yields CompIletion instances.

If the generation of completions is something expensive (that takes a lot of time), consider wrapping this
Completer class in a ThreadedCompleter. In that case, the completer algorithm runs in a background thread
and completions will be displayed as soon as they arrive.

Parameters

¢ document — Document instance.

e complete_event — CompleteEvent instance.

3.11.

Reference

111

prompt;oolkit Documentation, Release3.0.23

prompt_toolkit.completion.get_common_complete_suffix(document:
prompt_toolkit.document.Document,
completions: Se-
quence[prompt_toolkit.completion.base.Completion])
— Str
Return the common prefix for all completions.

prompt_toolkit.completion.merge_completers(completers:
Sequence[prompt_toolkit.completion.base.Completer],
deduplicate: bool = False) —
prompt_toolkit.completion.base. Completer
Combine several completers into one.

Parameters deduplicate — If True, wrap the result in a DeduplicateCompleter so that completions
that would result in the same text will be deduplicated.

3.11.7 Document

The Document that implements all the text operations/querying.

class prompt_toolkit.document.Document (text: str =", cursor_position: Optional[int] = None, selection:
Optional[prompt_toolkit.selection.SelectionState] = None)
This is a immutable class around the text and cursor position, and contains methods for querying this data, e.g.
to give the text before the cursor.

This class is usually instantiated by a Buffer object, and accessed as the document property of that class.
Parameters
* text —string
e cursor_position - int
» selection - SelectionState

property char_before_cursor: str
Return character before the cursor or an empty string.

property current_char: str
Return character under cursor or an empty string.

property current_line: str
Return the text on the line where the cursor is. (when the input consists of just one line, it equals text.

property current_line_after_cursor: str
Text from the cursor until the end of the line.

property current_line_before_cursor: str
Text from the start of the line until the cursor.

property cursor_position: int
The document cursor position.

property cursor_position_col: int
Current column. (0-based.)

property cursor_position_row: int
Current row. (0-based.)

112 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

cut_selection() — Tuple[prompt_toolkit.document. Document,
prompt_toolkit.clipboard.base.ClipboardData]
Return a (Document, ClipboardData) tuple, where the document represents the new document when the
selection is cut, and the clipboard data, represents whatever has to be put on the clipboard.

empty_line_count_at_the_end() — int
Return number of empty lines at the end of the document.

end_of_paragraph(count: int = 1, after: bool = False) — int
Return the end of the current paragraph. (Relative cursor position.)

find Csub: str, in_current_line: bool = False, include_current_position: bool = False, ignore_case: bool =
False, count: int = 1) — Optional[int]
Find text after the cursor, return position relative to the cursor position. Return None if nothing was found.

Parameters count — Find the n-th occurrence.

find_all (sub: str, ignore_case: bool = False) — List[int]
Find all occurrences of the substring. Return a list of absolute positions in the document.

find_backwards (sub: str, in_current_line: bool = False, ignore_case: bool = False, count: int =1) —
Optional[int]
Find fext before the cursor, return position relative to the cursor position. Return None if nothing was found.

Parameters count — Find the n-th occurrence.

find_boundaries_of_current_word (WORD: bool = False, include_leading_whitespace: bool = False,
include_trailing_whitespace: bool = False) — Tuple[int, int]
Return the relative boundaries (startpos, endpos) of the current word under the cursor. (This is at the current
line, because line boundaries obviously don’t belong to any word.) If not on a word, this returns (0,0)

find_enclosing_bracket_left (left_ch: str, right_ch: str, start_pos: Optional[int] = None) —
Optional[int]
Find the left bracket enclosing current position. Return the relative position to the cursor position.

When start_pos is given, don’t look past the position.

find_enclosing_bracket_right (left_ch: str, right_ch: str, end_pos: Optional[int] = None) —
Optional[int]
Find the right bracket enclosing current position. Return the relative position to the cursor position.

When end_pos is given, don’t look past the position.

find_matching_bracket_position(start_pos: Optional[int] = None, end_pos: Optional[int] = None) —
int
Return relative cursor position of matching [, (, { or < bracket.
When start_pos or end_pos are given. Don’t look past the positions.

find_next_matching_line (match_func: Callable[[str], bool], count: int = 1) — Optional[int]
Look downwards for empty lines. Return the line index, relative to the current line.

find_next_word_beginning(count: int = I, WORD: bool = False) — Optional[int]
Return an index relative to the cursor position pointing to the start of the next word. Return None if nothing
was found.

find_next_word_ending (include_current_position: bool = False, count: int = 1, WORD: bool = False) —
Optional[int]
Return an index relative to the cursor position pointing to the end of the next word. Return None if nothing
was found.

find_previous_matching_line(match_func: Callable[[str], bool], count: int = 1) — Optional[int]
Look upwards for empty lines. Return the line index, relative to the current line.

3.11.

Reference 113

prompt;oolkit Documentation, Release3.0.23

find_previous_word_beginning (count: int = 1, WORD: bool = False) — Optional[int]
Return an index relative to the cursor position pointing to the start of the previous word. Return None if
nothing was found.

find_previous_word_ending(count: int = I, WORD: bool = False) — Optional[int]
Return an index relative to the cursor position pointing to the end of the previous word. Return None if
nothing was found.

find_start_of_previous_word(count: int = I, WORD: bool = False, pattern: OptionalPattern[str]] =
None) — Optional[int]
Return an index relative to the cursor position pointing to the start of the previous word. Return None if
nothing was found.

Parameters pattern — (None or compiled regex). When given, use this regex pattern.

get_column_cursor_position(column: int) — int
Return the relative cursor position for this column at the current line. (It will stay between the boundaries
of the line in case of a larger number.)

get_cursor_down_position(count: int = I, preferred_column: Optional[int] = None) — int
Return the relative cursor position (character index) where we would be if the user pressed the arrow-down
button.

Parameters preferred_column — When given, go to this column instead of staying at the cur-
rent column.

get_cursor_left_position(count: int = 1) — int
Relative position for cursor left.

get_cursor_right_position(count: int = 1) — int
Relative position for cursor_right.

get_cursor_up_position(count: int = 1, preferred_column: Optional[int] = None) — int
Return the relative cursor position (character index) where we would be if the user pressed the arrow-up
button.

Parameters preferred_column — When given, go to this column instead of staying at the cur-
rent column.

get_end_of_document_position() — int
Relative position for the end of the document.

get_end_of_line_position() — int
Relative position for the end of this line.

get_start_of_document_position() — int
Relative position for the start of the document.

get_start_of_line_position(after_whitespace: bool = False) — int
Relative position for the start of this line.

get_word_before_cursor (WORD: bool = False, pattern: Optional[Pattern[str]] = None) — str
Give the word before the cursor. If we have whitespace before the cursor this returns an empty string.

Parameters pattern — (None or compiled regex). When given, use this regex pattern.

get_word_under_cursor (WORD: bool = False) — str
Return the word, currently below the cursor. This returns an empty string when the cursor is on a whitespace
region.

has_match_at_current_position(sub: str) — bool
True when this substring is found at the cursor position.

114

Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

insert_after (text: str) — prompt_toolkit.document.Document
Create a new document, with this text inserted after the buffer. It keeps selection ranges and cursor position
in sync.

insert_before (text: str) — prompt_toolkit.document.Document
Create a new document, with this text inserted before the buffer. It keeps selection ranges and cursor
position in sync.

property is_cursor_at_the_end: bool
True when the cursor is at the end of the text.

property is_cursor_at_the_end_of_line: bool
True when the cursor is at the end of this line.

last_non_blank_of_current_line_position() — int
Relative position for the last non blank character of this line.

property leading whitespace_in_current_line: str
The leading whitespace in the left margin of the current line.

property line_count: int
Return the number of lines in this document. If the document ends with a trailing n, that counts as the
beginning of a new line.

property lines: List[str]
Array of all the lines.

property lines_from_current: List[str]
Array of the lines starting from the current line, until the last line.

property on_first_line: bool
True when we are at the first line.

property on_last_line: bool
True when we are at the last line.

paste_clipboard_data(data: prompt_toolkit.clipboard.base.ClipboardData, paste_mode:
prompt_toolkit.selection.PasteMode = PasteMode. EMACS, count: int = 1) —
prompt_toolkit.document. Document
Return a new Document instance which contains the result if we would paste this data at the current cursor
position.

Parameters
» paste_mode — Where to paste. (Before/after/emacs.)
e count — When >1, Paste multiple times.

property selection: Optional[prompt_toolkit.selection.SelectionState]
SelectionState object.

selection_range() — Tuple[int, int]
Return (from, to) tuple of the selection. start and end position are included.

This doesn’t take the selection type into account. Use selection_ranges instead.

selection_range_at_line(row: int) — Optional[Tuple[int, int]]
If the selection spans a portion of the given line, return a (from, to) tuple.

The returned upper boundary is not included in the selection, so (0, 0) is an empty selection. (0, 1), is a
one character selection.

Returns None if the selection doesn’t cover this line at all.

3.11.

Reference 115

prompt;oolkit Documentation, Release3.0.23

selection_ranges() — Iterable[Tuple[int, int]]
Return a list of (from, to) tuples for the selection or none if nothing was selected. The upper boundary is
not included.

This will yield several (from, to) tuples in case of a BLOCK selection. This will return zero ranges, like
(8,8) for empty lines in a block selection.

start_of_paragraph(count: int = 1, before: bool = False) — int
Return the start of the current paragraph. (Relative cursor position.)

property text: str
The document text.

translate_index_to_position(index: int) — Tuple[int, int]
Given an index for the text, return the corresponding (row, col) tuple. (0-based. Returns (0, 0) for index=0.)

translate_row_col_to_index(row: int, col: int) — int
Given a (row, col) tuple, return the corresponding index. (Row and col params are 0-based.)

Negative row/col values are turned into zero.

3.11.8 Enums

prompt_toolkit.enums.DEFAULT_BUFFER = 'DEFAULT_BUFFER'
Name of the default buffer.

class prompt_toolkit.enums.EditingMode (value)
An enumeration.

prompt_toolkit.enums.SEARCH_BUFFER
Name of the search buffer.

prompt_toolkit.enums.SYSTEM_BUFFER = 'SYSTEM_BUFFER'
Name of the system buffer.

' SEARCH_BUFFER'

3.11.9 History

Implementations for the history of a Buffer.

NOTE: There is no DynamicHistory: This doesn’t work well, because the Buffer needs to be able to attach an event
handler to the event when a history entry is loaded. This loading can be done asynchronously and making the
history swappable would probably break this.

class prompt_toolkit.history.DummyHistory
History object that doesn’t remember anything.

append_string(string: str) — None
Add string to the history.

load_history_strings() — Iterable[str]
This should be a generator that yields st instances.

It should yield the most recent items first, because they are the most important. (The history can already
be used, even when it’s only partially loaded.)

store_string(string: str) — None
Store the string in persistent storage.

class prompt_toolkit.history.FileHistory (filename: str)
History class that stores all strings in a file.

116 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

load_history_strings() — Iterable[str]
This should be a generator that yields st instances.

It should yield the most recent items first, because they are the most important. (The history can already
be used, even when it’s only partially loaded.)

store_string(string.: str) — None
Store the string in persistent storage.

class prompt_toolkit.history.History
Base History class.

This also includes abstract methods for loading/storing history.

append_string(string: str) — None
Add string to the history.

get_strings() — List[str]
Get the strings from the history that are loaded so far. (In order. Oldest item first.)

load () — AsyncGenerator[str, None]
Load the history and yield all the entries in reverse order (latest, most recent history entry first).

This method can be called multiple times from the Buffer to repopulate the history when prompting for
a new input. So we are responsible here for both caching, and making sure that strings that were were
appended to the history will be incorporated next time this method is called.

abstract load_history_strings() — Iterable[str]
This should be a generator that yields s#r instances.

It should yield the most recent items first, because they are the most important. (The history can already
be used, even when it’s only partially loaded.)

abstract store_string(string: str) — None
Store the string in persistent storage.

class prompt_toolkit.history.InMemoryHistory (history_strings: Optional[Sequence[str]] = None)
History class that keeps a list of all strings in memory.

In order to prepopulate the history, it’s possible to call either append_string for all items or pass a list of strings
to __init__ here.

load_history_strings() — Iterable[str]
This should be a generator that yields s#r instances.

It should yield the most recent items first, because they are the most important. (The history can already
be used, even when it’s only partially loaded.)

store_string(string: str) — None
Store the string in persistent storage.

class prompt_toolkit.history.ThreadedHistory (history: prompt_toolkit.history.History)
Wrapper around History implementations that run the load() generator in a thread.

Use this to increase the start-up time of prompt_toolkit applications. History entries are available as soon as they
are loaded. We don’t have to wait for everything to be loaded.

append_string(string: str) — None
Add string to the history.

load() — AsyncGenerator[str, None]
Like History.load(), but call ‘self.load_history_strings() in a background thread.

3.11. Reference 117

prompt;oolkit Documentation, Release3.0.23

load_history_strings() — Iterable[str]
This should be a generator that yields st instances.

It should yield the most recent items first, because they are the most important. (The history can already
be used, even when it’s only partially loaded.)

store_string(string.: str) — None
Store the string in persistent storage.

3.11.10 Keys

class prompt_toolkit.keys.Keys(value)
List of keys for use in key bindings.

Note that this is an “StrEnum”, all values can be compared against strings.

3.11.11 Style

Styling for prompt_toolkit applications.

class prompt_toolkit.styles.AdjustBrightnessStyleTransformation(min_brightness:
Union[Callable|[[], float], float]
= 0.0, max_brightness:
Union[Callable[[], float], float]
=1.0)
Adjust the brightness to improve the rendering on either dark or light backgrounds.

For dark backgrounds, it’s best to increase min_brightness. For light backgrounds it’s best to decrease
max_brightness. Usually, only one setting is adjusted.

This will only change the brightness for text that has a foreground color defined, but no background color. It
works best for 256 or true color output.

Note: Notice that there is no universal way to detect whether the application is running in a light or dark terminal.
As a developer of an command line application, you’ll have to make this configurable for the user.

Parameters
* min_brightness — Float between 0.0 and 1.0 or a callable that returns a float.
e max_brightness — Float between 0.0 and 1.0 or a callable that returns a float.
invalidation_hash() — Hashable
When this changes, the cache should be invalidated.

transform_attrs(attrs: prompt_toolkit.styles.base.Attrs) — prompt_toolkit.styles.base.Attrs
Take an Attrs object and return a new Affrs object.

Remember that the color formats can be either “ansi...” or a 6 digit lowercase hexadecimal color (without
“# prefix).

class prompt_toolkit.styles.Attrs(color, bgcolor, bold, underline, strike, italic, blink, reverse, hidden)

Parameters

* color — Hexadecimal string. E.g. ‘000000’ or Ansi color name: e.g. ‘ansiblue’

118 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

* bgcolor — Hexadecimal string. E.g. “ffffff* or Ansi color name: e.g. ‘ansired’
* bold - Boolean

* underline — Boolean

* strike — Boolean

» italic - Boolean

* blink — Boolean

* reverse — Boolean

* hidden - Boolean

property bgcolor
Alias for field number 1

property blink
Alias for field number 6

property bold
Alias for field number 2

property color
Alias for field number O

property hidden
Alias for field number 8

property italic
Alias for field number 5

property reverse
Alias for field number 7

property strike
Alias for field number 4

property underline
Alias for field number 3

class prompt_toolkit.styles.BaseStyle
Abstract base class for prompt_toolkit styles.

abstract get_attrs_for_style_str(style_str: str, default: prompt_toolkit.styles.base.Attrs =
Attrs(color=", bgcolor=", bold=Fualse, underline=Fulse,
strike=False, italic=False, blink=False, reverse=False,
hidden=False)) — prompt_toolkit.styles.base.Attrs
Return Attrs for the given style string.

Parameters

¢ style_str — The style string. This can contain inline styling as well as classnames (e.g.
“class:title™).

e default — Artrs to be used if no styling was defined.

abstract invalidation_hash() — Hashable
Invalidation hash for the style. When this changes over time, the renderer knows that something in the style
changed, and that everything has to be redrawn.

abstract property style_rules: List[Tuple[str, str]]
The list of style rules, used to create this style. (Required for DynamicStyle and _MergedStyle to work.)

3.11. Reference 119

prompt;oolkit Documentation, Release3.0.23

class prompt_toolkit.styles.ConditionalStyleTransformation(style_transformation:
prompt_toolkit.styles.style_transformation.StyleTransform
filter:
Union[prompt_toolkit.filters.base.Filter,
bool])
Apply the style transformation depending on a condition.

invalidation_hash() — Hashable
When this changes, the cache should be invalidated.

transform_attrs(attrs: prompt_toolkit.styles.base.Attrs) — prompt_toolkit.styles.base.Attrs
Take an Attrs object and return a new Aftrs object.

Remember that the color formats can be either “ansi...” or a 6 digit lowercase hexadecimal color (without
‘# prefix).

class prompt_toolkit.styles.DummyStyle
A style that doesn’t style anything.

get_attrs_for_style_str(style_str: str, default: prompt_toolkit.styles.base.Attrs = Attrs(color=",
bgcolor=", bold=False, underline=False, strike=False, italic=False,
blink=False, reverse=False, hidden=False)) —
prompt_toolkit.styles.base.Attrs
Return Attrs for the given style string.

Parameters

¢ style_str — The style string. This can contain inline styling as well as classnames (e.g.
“class:title™).

e default — Artrs to be used if no styling was defined.

invalidation_hash() — Hashable
Invalidation hash for the style. When this changes over time, the renderer knows that something in the style
changed, and that everything has to be redrawn.

property style_rules: List[Tuple[str, str]]
The list of style rules, used to create this style. (Required for DynamicStyle and _MergedStyle to work.)

class prompt_toolkit.styles.DummyStyleTransformation
Don’t transform anything at all.

invalidation_hash() — Hashable
When this changes, the cache should be invalidated.

transform_attrs(attrs: prompt_toolkit.styles.base.Attrs) — prompt_toolkit.styles.base.Attrs
Take an Attrs object and return a new Aftrs object.

Remember that the color formats can be either “ansi...” or a 6 digit lowercase hexadecimal color (without
“# prefix).

class prompt_toolkit.styles.DynamicStyle(get_style: Callable[[],
Optional[prompt_toolkit.styles.base.BaseStyle])
Style class that can dynamically returns an other Style.

Parameters get_style — Callable that returns a StyIe instance.

get_attrs_for_style_str(style_str: str, default: prompt_toolkit.styles.base.Attrs = Attrs(color="",
bgcolor=", bold=False, underline=False, strike=False, italic=False,
blink=False, reverse=False, hidden=False)) —
prompt_toolkit.styles.base.Attrs
Return Attrs for the given style string.

120 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

Parameters

¢ style_str — The style string. This can contain inline styling as well as classnames (e.g.
“class:title™).

e default — Artrs to be used if no styling was defined.

invalidation_hash() — Hashable
Invalidation hash for the style. When this changes over time, the renderer knows that something in the style
changed, and that everything has to be redrawn.

property style_rules: List[Tuple[str, str]]
The list of style rules, used to create this style. (Required for DynamicStyle and _MergedStyle to work.)

class prompt_toolkit.styles.DynamicStyleTransformation(get_style_transformation: Callable[[], Op-
tional[prompt_toolkit.styles.style_transformation.StyleTransfor
StyleTransformation class that can dynamically returns any StyleTransformation.

Parameters get_style_transformation — Callable that returns a StyleTransformation in-
stance.

invalidation_hash() — Hashable
When this changes, the cache should be invalidated.

transform_attrs(attrs: prompt_toolkit.styles.base.Attrs) — prompt_toolkit.styles.base.Attrs
Take an Attrs object and return a new Aftrs object.

Remember that the color formats can be either “ansi...” or a 6 digit lowercase hexadecimal color (without
‘# prefix).
class prompt_toolkit.styles.Priority(value)
The priority of the rules, when a style is created from a dictionary.

In a Style, rules that are defined later will always override previous defined rules, however in a dictionary, the
key order was arbitrary before Python 3.6. This means that the style could change at random between rules.

We have two options:

* DICT_KEY_ORDER: This means, iterate through the dictionary, and take the key/value pairs in or-
der as they come. This is a good option if you have Python >3.6. Rules at the end will override rules
at the beginning.

* MOST_PRECISE: keys that are defined with most precision will get higher priority. (More precise means:
more elements.)

class prompt_toolkit.styles.Style(style_rules: List[Tuple[str, str]])
Create a Style instance from a list of style rules.

The style_rules is supposed to be a list of (‘classnames’, ‘style’) tuples. The classnames are a whitespace sepa-
rated string of class names and the style string is just like a Pygments style definition, but with a few additions:
it supports ‘reverse’ and ‘blink’.

Later rules always override previous rules.

Usage:

Style([
("title', '"#££f0000 bold underline'),
('something-else', 'reverse'),
('classl class2', 'reverse'),

D

The from_dict classmethod is similar, but takes a dictionary as input.

3.11. Reference 121

prompt;oolkit Documentation, Release3.0.23

classmethod from_dict(style_dict: Dict/str, str], priority: prompt_toolkit.styles.style.Priority =
Priority. DICT_KEY_ORDER) — prompt_toolkit.styles.style.Style

Parameters
» style_dict - Style dictionary.
e priority - Priority value.

get_attrs_for_style_str(style_str: str, default: prompt_toolkit.styles.base.Attrs = Attrs(color=",
bgcolor=", bold=False, underline=False, strike=False, italic=False,
blink=False, reverse=False, hidden=False)) —
prompt_toolkit.styles.base.Attrs
Get Attrs for the given style string.

invalidation_hash() — Hashable
Invalidation hash for the style. When this changes over time, the renderer knows that something in the style
changed, and that everything has to be redrawn.

property style_rules: List[Tuple[str, str]]
The list of style rules, used to create this style. (Required for DynamicStyle and _MergedStyle to work.)

class prompt_toolkit.styles.StyleTransformation
Base class for any style transformation.

invalidation_hash() — Hashable
When this changes, the cache should be invalidated.

abstract transform_attrs(attrs: prompt_toolkit.styles.base.Attrs) — prompt_toolkit.styles.base.Attrs
Take an Attrs object and return a new Aftrs object.

Remember that the color formats can be either “ansi...” or a 6 digit lowercase hexadecimal color (without
“# prefix).

class prompt_toolkit.styles.SwapLightAndDarkStyleTransformation
Turn dark colors into light colors and the other way around.

This is meant to make color schemes that work on a dark background usable on a light background (and the other
way around).

Notice that this doesn’t swap foreground and background like “reverse” does. It turns light green into dark green
and the other way around. Foreground and background colors are considered individually.

Also notice that when <reverse> is used somewhere and no colors are given in particular (like what is the default
for the bottom toolbar), then this doesn’t change anything. This is what makes sense, because when the ‘default’
color is chosen, it’s what works best for the terminal, and reverse works good with that.

transform_attrs(attrs: prompt_toolkit.styles.base.Attrs) — prompt_toolkit.styles.base.Attrs
Return the Artrs used when opposite luminosity should be used.

prompt_toolkit.styles.merge_style_transformations (style_transformations: Se-
quence[prompt_toolkit.styles.style_transformation.StyleTransformatic
%
prompt_toolkit.styles.style_transformation.StyleTransformation
Merge multiple transformations together.

prompt_toolkit.styles.merge_styles(styles: List[prompt_toolkit.styles.base.BaseStyle]) —
prompt_toolkit.styles.style._MergedStyle
Merge multiple Style objects.

prompt_toolkit.styles.pygments_token_to_classname (token: Token) — str
Turn e.g. Token.Name.Exception into ‘pygments.name.exception’.

122 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

(Our Pygments lexer will also turn the tokens that pygments produces in a prompt_toolkit list of fragments that
match these styling rules.)

prompt_toolkit.styles.style_from_pygments_cls(pygments_style_cls: Type[PygmentsStyle]) —
prompt_toolkit.styles.style.Style
Shortcut to create a Style instance from a Pygments style class and a style dictionary.

Example:

from prompt_toolkit.styles.from_pygments import style_from_pygments_cls
from pygments.styles import get_style_by_name
style = style_from_pygments_cls(get_style_by_name('monokai'))

Parameters pygments_style_cls — Pygments style class to start from.

prompt_toolkit.styles.style_from_pygments_dict(pygments_dict: Dict[Token, str]) —
prompt_toolkit.styles.style.Style
Create a Style instance from a Pygments style dictionary. (One that maps Token objects to style strings.)

3.11.12 Shortcuts

class prompt_toolkit.shortcuts.CompleteStyle(value)
How to display autocompletions for the prompt.

class prompt_toolkit.shortcuts.ProgressBar (title: Optional[Union[str, MagicFormattedText,
List{Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]] = None, formatters: Op-

tional[Sequence[prompt_toolkit.shortcuts.progress_bar.formatters.Formatter]]

= None, bottom_toolbar: Optional[Union|[str,
MagicFormattedText, List[Union[Tuple[str, str], Tuple[str,
str, Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]] = None, style:
Optional[prompt_toolkit.styles.base.BaseStyle] = None,
key_bindings: Op-
tional[prompt_toolkit.key_binding.key_bindings.KeyBindings]
= None, file: Optional[TextIO] = None, color_depth:
Optional[prompt_toolkit.output.color_depth.ColorDepth] =
None, output: Optional[prompt_toolkit.output.base.Output/
= None, input: Optional[prompt_toolkit.input.base.Input] =
None)

Progress bar context manager.

Usage

with ProgressBar(...) as pb:
for item in pb(data):

Parameters

* title — Text to be displayed above the progress bars. This can be a callable or formatted
text as well.

e formatters — List of Formatter instances.

3.11. Reference 123

prompt;oolkit Documentation, Release3.0.23

* bottom_toolbar — Text to be displayed in the bottom toolbar. This can be a callable or
formatted text.

e style — prompt_toolkit.styles.BaseStyle instance.

e key_bindings — KeyBindings instance.

» file - The file object used for rendering, by default sys.stderr is used.
» color_depth — prompt_toolkit ColorDepth instance.

e output — Output instance.

e input - Input instance.

124 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

class prompt_toolkit.shortcuts.PromptSession(message: Optional[Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]] =", *, multiline:
Union[prompt_toolkit.filters.base.Filter, bool] = False,
wrap_lines: Union[prompt_toolkit.filters.base.Filter,
bool] = True, is_password:
Union[prompt_toolkit.filters.base.Filter, bool] = False,
vi_mode: bool = False, editing_mode:
prompt_toolkit.enums.EditingMode =
EditingMode. EMACS, complete_while_typing:
Union[prompt_toolkit.filters.base.Filter, bool] = True,
validate_while_typing:
Union[prompt_toolkit.filters.base.Filter, bool] = True,
enable_history_search:
Union[prompt_toolkit.filters.base.Filter, bool] = False,
search_ignore_case:
Union[prompt_toolkit.filters.base.Filter, bool] = False,
lexer: Optional[prompt_toolkit.lexers.base.Lexer] =
None, enable_system_prompt:
Union[prompt_toolkit.filters.base.Filter, bool] = False,
enable_suspend: Union[prompt_toolkit.filters.base.Filter,
bool] = False, enable_open_in_editor:
Union[prompt_toolkit.filters.base.Filter, bool] = False,
validator: Optional[prompt_toolkit.validation.Validator]
= None, completer:
Optional[prompt_toolkit.completion.base.Completer] =
None, complete_in_thread: bool = False,
reserve_space_for_menu: int = 8, complete_style:
prompt_toolkit.shortcuts.prompt.CompleteStyle =
CompleteStyle. COLUMN, auto_suggest:
Optional[prompt_toolkit.auto_suggest. AutoSuggest] =
None, style:
Optional[prompt_toolkit.styles.base.BaseStyle] = None,
style_transformation: Op-
tional[prompt_toolkit.styles.style_transformation.StyleTransformation]
= None, swap_light_and_dark_colors:
Union[prompt_toolkit.filters.base.Filter, bool] = False,
color_depth:
Optional[prompt_toolkit.output.color_depth.ColorDepth]
= None, include_default_pygments_style:
Union[prompt_toolkit.filters.base.Filter, bool] = True,
history: Optional[prompt_toolkit.history.History] =
None, clipboard:
Optional[prompt_toolkit.clipboard.base.Clipboard] =
None, prompt_continuation: Optional[Union/str,
MagicFormattedText, List[Union[Tuple[str, str], Tuple[str,
str, Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[int, int, int], Optional[Union[str,
MagicFormattedText, List[Union[Tuple[str, str], Tuple[str,
str, Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]]]]] = None, rprompt:
Optional[Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],

> 3 5 —

3.11. Reference Optional[Union[str, MagicFormattedText, 125
List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]] = None, mouse_support:

prompt;oolkit Documentation, Release3.0.23

This is a wrapper around a lot of prompt_toolkit functionality and can be a replacement for raw_input.

All parameters that expect “formatted text” can take either just plain text (a unicode object), a list of
(style_str, text) tuples or an HTML object.

Example usage:

s = PromptSession(message="'>")
text = s.prompt()

Parameters

* message — Plain text or formatted text to be shown before the prompt. This can also be a
callable that returns formatted text.

* multiline - bool or Filter. When True, prefer a layout that is more adapted for multiline
input. Text after newlines is automatically indented, and search/arg input is shown below the
input, instead of replacing the prompt.

e wrap_lines — bool or Filter. When True (the default), automatically wrap long lines
instead of scrolling horizontally.

* is_password — Show asterisks instead of the actual typed characters.

* editing_mode — EditingMode.VI or EditingMode.EMACS.

e vi_mode - bool, if True, Identical to editing_mode=EditingMode.VI.

» complete_while_typing — bool or Filter. Enable autocompletion while typing.

» validate_while_typing — bool or Filter. Enable input validation while typing.

» enable_history_search — bool or Filter. Enable up-arrow parting string matching.
e search_ignore_case — Filter. Search case insensitive.

* lexer — Lexer to be used for the syntax highlighting.

» validator — Validator instance for input validation.

» completer — Completer instance for input completion.

» complete_in_thread - bool or Filter. Run the completer code in a background thread
in order to avoid blocking the user interface. For CompleteStyle.READLINE_LIKE, this
setting has no effect. There we always run the completions in the main thread.

» reserve_space_for_menu — Space to be reserved for displaying the menu. (0 means that
no space needs to be reserved.)

* auto_suggest — AutoSuggest instance for input suggestions.
e style — Style instance for the color scheme.

e include_default_pygments_style — bool or Filter. Tell whether the default styling
for Pygments lexers has to be included. By default, this is true, but it is recommended to be
disabled if another Pygments style is passed as the style argument, otherwise, two Pygments
styles will be merged.

e style_transformation — StyleTransformation instance.

» swap_light_and_dark_colors - bool or Filter. When enabled, apply
SwapLightAndDarkStyleTransformation. This is useful for switching between
dark and light terminal backgrounds.

* enable_system_prompt — bool or Filter. Pressing Meta+’!” will show a system prompt.

126 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

enable_suspend - bool or Filter. Enable Control-Z style suspension.

enable_open_in_editor — bool or Filter. Pressing ‘v’ in Vi mode or C-X C-E in emacs
mode will open an external editor.

history — History instance.
clipboard - Clipboard instance. (e.g. InMemoryClipboard)

rprompt — Text or formatted text to be displayed on the right side. This can also be a callable
that returns (formatted) text.

bottom_toolbar — Formatted text or callable which is supposed to return formatted text.

prompt_continuation — Text that needs to be displayed for a multiline prompt continua-
tion. This can either be formatted text or a callable that takes a prompt_width, line_number
and wrap_count as input and returns formatted text. When this is None (the default), then
prompt_width spaces will be used.

complete_style - CompleteStyle.COLUMN, CompleteStyle.MULTI_COLUMN or
CompleteStyle.READLINE_LIKE.

mouse_support — bool or Filter to enable mouse support.

placeholder — Text to be displayed when no input has been given yet. Unlike the default
parameter, this won’t be returned as part of the output ever. This can be formatted text or a
callable that returns formatted text.

refresh_interval — (number; in seconds) When given, refresh the UI every so many
seconds.

input — Input object. (Note that the preferred way to change the input/output is by creating
an AppSession.)

output — Output object.

3.11.

Reference

127

prompt;oolkit Documentation, Release3.0.23

prompt (message: Optional[Union[str, MagicFormattedText, List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]], Callable[[], Any]]] = None, *,
editing_mode: Optional[prompt_toolkit.enums.EditingMode] = None, refresh_interval:
Optional[float] = None, vi_mode: Optional[bool] = None, lexer:
Optional[prompt_toolkit.lexers.base.Lexer] = None, completer:
Optional[prompt_toolkit.completion.base.Completer] = None, complete_in_thread: Optional[bool]
= None, is_password: Optional[bool] = None, key_bindings:
Optional[prompt_toolkit.key_binding.key_bindings.KeyBindingsBase] = None, bottom_toolbar:
Optional[Union[str, MagicFormattedText, List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]], Callable[[], Any]]] = None, style:
Optional[prompt_toolkit.styles.base.BaseStyle] = None, color_depth:
Optional[prompt_toolkit.output.color_depth.ColorDepth] = None, include_default_pygments_style:
Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None, style_transformation:
Optional[prompt_toolkit.styles.style_transformation.StyleTransformation] = None,
swap_light_and_dark_colors: Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None,
rprompt: Optional[Union[str, MagicFormattedText, List| Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]], Callable[[], Any]]] = None,
multiline: Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None, prompt_continuation:
Optional[Union[str, MagicFormattedText, List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]], Callable[[int, int, int],
Optional[Union[str, MagicFormattedText, List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]], Callable[[], Any]]]]]] = None,
wrap_lines: Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None,
enable_history_search: Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None,
search_ignore_case: Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None,
complete_while_typing: Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None,
validate_while_typing: Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None,
complete_style: Optional[prompt_toolkit.shortcuts.prompt.CompleteStyle] = None, auto_suggest:
Optional[prompt_toolkit.auto_suggest. AutoSuggest] = None, validator:
Optional[prompt_toolkit.validation. Validator] = None, clipboard:
Optional[prompt_toolkit.clipboard.base.Clipboard] = None, mouse_support:
Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None, input_processors:
Optional[List[prompt_toolkit.layout.processors.Processor]] = None, placeholder:
Optional[Union[str, MagicFormattedText, List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]], Callable[[], Any]]] = None,
reserve_space_for_menu: Optional[int] = None, enable_system_prompt:
Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None, enable_suspend:
Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None, enable_open_in_editor:
Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None, tempfile_suffix:
Optional[Union[str, Callable[[], str]]] = None, tempfile: Optional[Union[str, Callable[[], str]]] =
None, default: Union[str, prompt_toolkit.document.Document] = ", accept_default: bool = False,
pre_run: Optional[Callable[[], None]] = None, set_exception_handler: bool = True, in_thread: bool
= False) — prompt_toolkit.shortcuts.prompt._T

Display the prompt.

The first set of arguments is a subset of the PromptSession class itself. For these, passing in None will
keep the current values that are active in the session. Passing in a value will set the attribute for the session,
which means that it applies to the current, but also to the next prompts.

Note that in order to erase a Completer, Validator or AutoSuggest, you can’t use None. Instead pass
in a DummyCompleter, DummyValidator or DummyAutoSuggest instance respectively. For a Lexer you
can pass in an empty SimpleLexer.

Additional arguments, specific for this prompt:

Parameters

128

Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

¢ default — The default input text to be shown. (This can be edited by the user).

¢ accept_default — When True, automatically accept the default value without allowing
the user to edit the input.

e pre_run — Callable, called at the start of Application.run.

e in_thread — Run the prompt in a background thread; block the current thread.
This avoids interference with an event loop in the current thread. Like Applica-
tion.run(in_thread=True).

This method will raise KeyboardInterrupt when control-c has been pressed (for abort) and EOFError
when control-d has been pressed (for exit).

prompt_toolkit.shortcuts.button_dialog(title: Optional[Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]],
Callable[[], Any]]] = ", text: Optional[Union/str,
MagicFormattedText, List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]],
Callable[[], Any]]] =", buttons. List[Tuple[str,
prompt_toolkit.shortcuts.dialogs._T]] =[], style:
Optional[prompt_toolkit.styles.base.BaseStyle] = None) —
prompt_toolkit.application.application.Application[prompt_toolkit.shortcuts.dialogs

Display a dialog with button choices (given as a list of tuples). Return the value associated with button.

prompt_toolkit.shortcuts.clear() — None
Clear the screen.

prompt_toolkit.shortcuts.clear_title() — None
Erase the current title.

prompt_toolkit.shortcuts.confirm(message: str = 'Confirm?’, suffix: str ="(y/n) ") — bool
Display a confirmation prompt that returns True/False.

prompt_toolkit.shortcuts.create_confirm_session(message: str, suffix: str="(y/n)"') —
prompt_toolkit.shortcuts.prompt. PromptSession[bool]
Create a PromptSession object for the ‘confirm’ function.

prompt_toolkit.shortcuts.input_dialog(title: Optional{Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]],
Callable[[], Any]]] = ", text: Optional[Union/str,
MagicFormattedText, List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]],
Callable[[], Any]]] =", ok_text: str = 'OK', cancel_text: str =
'‘Cancel’, completer:
Optional[prompt_toolkit.completion.base.Completer] = None,
validator: Optional[prompt_toolkit.validation.Validator] = None,
password: Union[prompt_toolkit.filters.base.Filter, bool] = False,
style: Optional[prompt_toolkit.styles.base.BaseStyle] = None) —
prompt_toolkit.application.application.Application[str]

Display a text input box. Return the given text, or None when cancelled.

3.11. Reference 129

prompt;oolkit Documentation, Release3.0.23

prompt_toolkit.shortcuts.message_dialog(title: Optional[Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None][]]],
Callable[[], Any]]] =", text: Optional[Union/str,
MagicFormattedText, List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]],
Callable[[], Any]]] =", ok_text: str ="Ok’, style:
Optional[prompt_toolkit.styles.base.BaseStyle] = None) —
prompt_toolkit.application.application.Application[None]

Display a simple message box and wait until the user presses enter.

prompt_toolkit.shortcuts.print_formatted_text (*values: Any, sep: str="" end: str = \n', file:
Optional[TextlO] = None, flush: bool = False, style:
Optional[prompt_toolkit.styles.base.BaseStyle] = None,
output: Optional[prompt_toolkit.output.base.Output] =
None, color_depth: Op-
tional[prompt_toolkit.output.color_depth.ColorDepth]
= None, style_transformation: Op-
tional[prompt_toolkit.styles.style_transformation.StyleTransformation]
= None, include_default_pygments_style: bool = True)
— None

print_formatted_text(*values, sep=' ', end='\n', file=None, flush=False, style=None,
< output=None)

Print text to stdout. This is supposed to be compatible with Python’s print function, but supports printing of
formatted text. You can pass a FormattedText, HTML or ANSI object to print formatted text.

e Print HTML as follows:

print_formatted_text (HTML('<i>Some italic text</i> <ansired>This is red!</
—ansired>"'))

style = Style.from_dict({
'hello': '"#££f0066',
'world': '#884444 italic',
b
print_formatted_text (HTML('<hello>Hello</hello> <world>world</world>!"),.
—style=style)

Print a list of (style_str, text) tuples in the given style to the output. E.g.:

style = Style.from_dict({
'hello': '#ff0066',
'world': '#884444 italic',
b
fragments = FormattedText([
('class:hello', 'Hello'),
('class:world', 'World'),
D
print_formatted_text(fragments, style=style)

If you want to print a list of Pygments tokens, wrap it in PygmentsTokens to do the conversion.

If a prompt_toolkit Application is currently running, this will always print above the application or prompt (sim-

130 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

ilar to patch_stdout). So, print_formatted_text will erase the current application, print the text, and render the
application again.

Parameters

values — Any kind of printable object, or formatted string.
sep — String inserted between values, default a space.

end - String appended after the last value, default a newline.
style — Style instance for the color scheme.

include_default_pygments_style — bool. Include the default Pygments style when set
to True (the default).

prompt_toolkit.shortcuts.progress_dialog(title: Optional[Union[str, MagicFormattedText,

List[Union[Tuple[str, str], Tuple[str, str,

Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]] =", text: Optional[Union[str,
MagicFormattedText, List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]] =", run_callback:
Callable[[Callable[[int], None], Callable[[str], None]], None]
= <function <lambda>>, style:
Optional[prompt_toolkit.styles.base.BaseStyle] = None) —
prompt_toolkit.application.application.Application[None]

Parameters run_callback — A function that receives as input a set_percentage function and it does
the work.

3.11. Reference

131

prompt;oolkit Documentation, Release3.0.23

prompt_toolkit.shortcuts.prompt (message: Optional[Union[str, MagicFormattedText, List[Union[Tuple/str,

132

str], Tuple[str, str, Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]] = None, *, history:
Optional[prompt_toolkit.history.History] = None, editing_mode:
Optional[prompt_toolkit.enums.EditingMode] = None, refresh_interval:
Optional[float] = None, vi_mode: Optional[bool] = None, lexer:
Optional[prompt_toolkit.lexers.base.Lexer] = None, completer:
Optional[prompt_toolkit.completion.base.Completer] = None,
complete_in_thread: Optional[bool] = None, is_password: Optional[bool]
= None, key_bindings:
Optional[prompt_toolkit.key_binding.key_bindings.KeyBindingsBase] =
None, bottom_toolbar: Optional[Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,

Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]],
Callable[[], Any]]] = None, style:
Optional[prompt_toolkit.styles.base.BaseStyle] = None, color_depth:
Optional[prompt_toolkit.output.color_depth.ColorDepth] = None,
include_default_pygments_style:

Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None,
style_transformation:
Optional[prompt_toolkit.styles.style_transformation.StyleTransformation]
= None, swap_light_and_dark_colors:

Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None, rprompt:
Optional[Union[str, MagicFormattedText, List[Union[Tuple[str, str],
Tuple[str, str, Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]l]]], Callable[[], Any]]] = None, multiline:

Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None,
prompt_continuation: Optional[Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,

Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]],
Callable[[int, int, int], Optional[Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,

Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]],
Callable[[], Any]]]]]] = None, wrap_lines:

Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None,
enable_history_search: Optional[Union[prompt_toolkit.filters.base.Filter,
bool]] = None, search_ignore_case:

Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None,
complete_while_typing: Optional[Union[prompt_toolkit.filters.base.Filter,
bool]] = None, validate_while_typing:

Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None,
complete_style: Optional[prompt_toolkit.shortcuts.prompt.CompleteStyle]
= None, auto_suggest:
Optional[prompt_toolkit.auto_suggest.AutoSuggest] = None, validator:
Optional[prompt_toolkit.validation. Validator] = None, clipboard:
Optional[prompt_toolkit.clipboard.base.Clipboard] = None,
mouse_support: Optional[Union[prompt_toolkit.filters.base.Filter, bool]]
= None, input_processors:

Optional[List[prompt_toolkit.layout.processors.Processor]] = None,
placeholder: Optional[Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,

Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]],
Callable[[], Any]]] = None, reserve_space_for_menu: Optional[int] =
None, enable_system_prompt:
Optional[Union[prompt_toolkit.filte

rs.base.Filter, bool]] = None,

ab Optiond o bromb G b
2 CIptrond OnfH S

= None, enable_open_in_editor: Chapter 3. Table of contents
Optional[Union[prompt_toolkit.filters.base.Filter, bool]] = None,
tempfile_suffix: Optional[Union[str, Callable[[], str]]] = None, tempfile:
Optional[Union[str, Callable[[], str]]] = None, default: str =",

prompt;oolkit Documentation, Release3.0.23

The first set of arguments is a subset of the PromptSession class itself. For these, passing in None will keep
the current values that are active in the session. Passing in a value will set the attribute for the session, which
means that it applies to the current, but also to the next prompts.

Note that in order to erase a Completer, Validator or AutoSuggest, you can’t use None. Instead pass in a
DummyCompleter, DummyValidator or DummyAutoSuggest instance respectively. For a Lexer you can pass
in an empty SimpleLexer.

Additional arguments, specific for this prompt:
Parameters
» default — The default input text to be shown. (This can be edited by the user).

* accept_default — When True, automatically accept the default value without allowing the
user to edit the input.

» pre_run — Callable, called at the start of Application.run.

» in_thread — Run the prompt in a background thread; block the current thread. This avoids
interference with an event loop in the current thread. Like Application.run(in_thread=True).

This method will raise KeyboardInterrupt when control-c has been pressed (for abort) and EOFError when
control-d has been pressed (for exit).

prompt_toolkit.shortcuts.radiolist_dialog(title: Optional[Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]] =", text: Optional[Union/str,
MagicFormattedText, List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]] =", ok_text: str ="Ok’,
cancel_text: str = 'Cancel’, values:
Optional[List[Tuple[prompt_toolkit.shortcuts.dialogs._T,
Optional[Union[str, MagicFormattedText,
List{Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]]]]] = None, style:
Optional[prompt_toolkit.styles.base.BaseStyle] = None) —
prompt_toolkit.application.application.Application[prompt_toolkit.shortcuts.dia

Display a simple list of element the user can choose amongst.

Only one element can be selected at a time using Arrow keys and Enter. The focus can be moved between the
list and the Ok/Cancel button with tab.

prompt_toolkit.shortcuts.set_title(zext: str) — None
Set the terminal title.

prompt_toolkit.shortcuts.yes_no_dialog/(title: Optional[Union[str, MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]],
Callable[[], Any]]] =", text: Optional[Union[str,
MagicFormattedText, List[Union[Tuple[str, str], Tuple[str, str,
Callable[[prompt_toolkit.mouse_events.MouseEvent], None]]]],
Callable[[], Any]]] =", yes_text: str = 'Yes', no_text: str = 'No',
style: Optional[prompt_toolkit.styles.base.BaseStyle] = None) —
prompt_toolkit.application.application.Application[bool]

Display a Yes/No dialog. Return a boolean.

Formatter classes for the progress bar. Each progress bar consists of a list of these formatters.

3.11. Reference 133

prompt;oolkit Documentation, Release3.0.23

class prompt_toolkit.shortcuts.progress_bar.formatters.Bar(start: str="[', end: str="]', sym_a: str
='=", sym_b: str=">', sym_c: str="",
unknown: str="#")
Display the progress bar itself.

class prompt_toolkit.shortcuts.progress_bar.formatters.Formatter
Base class for any formatter.

class prompt_toolkit.shortcuts.progress_bar.formatters.IterationsPerSecond
Display the iterations per second.

class prompt_toolkit.shortcuts.progress_bar.formatters.Label (width: Union[None, int,
prompt_toolkit.layout.dimension.Dimension,
Callable[[], Any]] = None, suffix:
str=")
Display the name of the current task.

Parameters
» width - If a width is given, use this width. Scroll the text if it doesn’t fit in this width.

» suffix — String suffix to be added after the task name, e.g. ‘: °. If no task name was given,
no suffix will be added.

class prompt_toolkit.shortcuts.progress_bar.formatters.Percentage
Display the progress as a percentage.

class prompt_toolkit.shortcuts.progress_bar.formatters.Progress
Display the progress as text. E.g. “8/20”

class prompt_toolkit.shortcuts.progress_bar.formatters.Rainbow(formatter:
prompt_toolkit.shortcuts.progress_bar.formatters.For
For the fun. Add rainbow colors to any of the other formatters.

class prompt_toolkit.shortcuts.progress_bar.formatters.SpinningWheel
Display a spinning wheel.

class prompt_toolkit.shortcuts.progress_bar.formatters.Text(text: Optional[Union[str,
MagicFormattedText,
List[Union[Tuple[str, str], Tuple[str,
str,
Callable[[prompt_toolkit.mouse_events.MouseEvent],
None]]]], Callable[[], Any]]], style:
str="")

Display plain text.

class prompt_toolkit.shortcuts.progress_bar.formatters.TimeElapsed
Display the elapsed time.

class prompt_toolkit.shortcuts.progress_bar.formatters.TimeLeft
Display the time left.

prompt_toolkit.shortcuts.progress_bar.formatters.create_default_formatters() —
List[prompt_toolkit.shortcuts.progre:
Return the list of default formatters.

134 Chapter 3. Table of contents

prompt;oolkit Documentation, Release3.0.23

3.11.13 Validation

Input validation for a Buffer. (Validators will be called before accepting input.)

class prompt_toolkit.validation.ConditionalValidator (validator: prompt_toolkit.validation.Validator,
filter: Union[prompt_toolkit.filters.base.Filter,
bool])
Validator that can be switched on/off according to a filter. (This wraps around another validator.)

validate (document: prompt_toolkit.document.Document) — None
Validate the input. If invalid, this should raise a ValidationError.

Parameters document — Document instance.

class prompt_toolkit.validation.DummyValidator
Validator class that accepts any input.

validate (document: prompt_toolkit.document.Document) — None
Validate the input. If invalid, this should raise a ValidationError.

Parameters document — Document instance.

class prompt_toolkit.validation.DynamicValidator (get_validator: Callable[[],
Optional[prompt_toolkit.validation.Validator]])
Validator class that can dynamically returns any Validator.

Parameters get_validator — Callable that returns a Validator instance.

validate (document: prompt_toolkit.document.Document) — None
Validate the input. If invalid, this should raise a ValidationError.

Parameters document — Document instance.

async validate_async(document: prompt_toolkit.document.Document) — None
Return a Future which is set when the validation is ready. This function can be overloaded in order to
provide an asynchronous implementation.

class prompt_toolkit.validation.ThreadedValidator (validator: prompt_toolkit.validation.Validator)
Wrapper that runs input validation in a thread. (Use this to prevent the user interface from becoming unresponsive
if the input validation takes too much time.)

validate (document: prompt_toolkit.document.Document) — None
Validate the input. If invalid, this should raise a ValidationError.

Parameters document — Document instance.

async validate_async(document: prompt_toolkit.document.Document) — None
Run the validate function in a thread.

exception prompt_toolkit.validation.ValidationError (cursor_position: int = 0, message: str ="")
Error raised by Validator.validate().

Parameters
* cursor_position — The cursor position where the error occurred.
* message — Text.

class prompt_toolkit.validation.Validator
Abstract base class for an input validator.

A validator is typically created in one of the following two ways:

« Either by overriding this class and implementing the validate method.

3.11. Reference 135

prompt;oolkit Documentation, Release3.0.23

* Or by passing a callable to Validator.from_callable.

If the validation takes some time and needs to happen in a background thread, this can be wrapped in a
ThreadedValidator.

classmethod from_callable (validate_func: Callable[[str], bool], error_message: str = 'Invalid input’,
move_cursor_to_end: bool = False) — prompt_toolkit.validation. Validator
Create a validator from a simple validate callable. E.g.:

def is_valid(text):
return text in ['hello', 'world']
Validator. from_callable(is_valid, error_message='Invalid input')

Parameters

» validate_func - Callable that takes the input string, and returns True if the input is valid
input.

* error_message — Message to be displayed if the input is invalid.
¢ move_cursor_to_end — Move the cursor to the end of the input, if the input is invalid.
abstract validate(document: prompt_toolkit.document.Document) — None
Validate the input. If invalid, this should raise a ValidationError.
Parameters document — Document instance.

async validate_async(document: prompt_toolkit.document.Document) — None
Return a Future which is set when the validation is ready. This function can be overloaded in order to
provide an asynchronous implementation.

3.11.14 Auto suggestion

Fish-style like auto-suggestion.

While a user types input in a certain buffer, suggestions are generated (asynchronously.) Usually, they are displayed
after the input. When the cursor presses the right arrow and the cursor is at the end of the input, the suggestion will be
inserted.

If you want the auto suggestions to be asynchronous (in a background thread), because they take too much time, and
could potentially block the event loop, then wrap the AutoSuggest instance into a ThreadedAutoSuggest.

class prompt_toolkit.auto_suggest.AutoSuggest
Base class for auto suggestion implementations.

abstract get_suggestion(buffer: Buffer, document: prompt_toolkit.document.Document) —
Optional[prompt_toolkit.auto_suggest.Suggestion]
Return None or a Suggestion instance.

We receive both Buffer and Document. The reason is that auto suggestions are retrieved asynchronously.
(Like completions.) The buffer text could be changed in the meantime, but document contains the buffer
document like it was at the start of the auto suggestion call. So, from here, don’t access buffer. text, but
use document . text instead.

Parameters
¢ buffer — The Buffer instance.

¢ document — The Document instance.

136 Chapter 3. Table of contents

http://fishshell.com/

prompt;oolkit Documentation, Release3.0.23

async get_suggestion_async (buff: Buffer, document: prompt_toolkit.document.Document) —
Optional[prompt_toolkit.auto_suggest.Suggestion)
Return a Future which is set when the suggestions are ready. This function can be overloaded in order to
provide an asynchronous implementation.

class prompt_toolkit.auto_suggest.AutoSuggestFromHistory
Give suggestions based on the lines in the history.

get_suggestion(buffer: Buffer, document: prompt_toolkit.document.Document) —
Optional[prompt_toolkit.auto_suggest.Suggestion]
Return None or a Suggestion instance.

We receive both Buffer and Document. The reason is that auto suggestions are retrieved asynchronously.
(Like completions.) The buffer text could be changed in the meantime, but document contains the buffer
document like it was at the start of the auto suggestion call. So, from here, don’t access buffer. text, but
use document . text instead.

Parameters
¢ buffer — The Buffer instance.
¢ document — The Document instance.

class prompt_toolkit.auto_suggest.ConditionalAutoSuggest (auto_suggest:
prompt_toolkit.auto_suggest. AutoSuggest,
filter: Union[bool,
prompt_toolkit.filters.base.Filter])
Auto suggest that can be turned on and of according to a certain condition.

get_suggestion(buffer: Buffer, document: prompt_toolkit.document.Document) —
Optional[prompt_toolkit.auto_suggest.Suggestion]
Return None or a Suggestion instance.

We receive both Buffer and Document. The reason is that auto suggestions are retrieved asynchronously.
(Like completions.) The buffer text could be changed in the meantime, but document contains the buffer
document like it was at the start of the auto suggestion call. So, from here, don’t access buffer. text, but
use document . text instead.

Parameters
e buffer — The Buffer instance.
¢ document — The Document instance.

class prompt_toolkit.auto_suggest.DummyAutoSuggest
AutoSuggest class that doesn’t return any suggestion.

get_suggestion(buffer: Buffer, document: prompt_toolkit.document.Document) —
Optional[prompt_toolkit.auto_suggest.Suggestion]
Return None or a Suggestion instance.

We receive both Buffer and Document. The reason is that auto suggestions are retrieved asynchronously.
(Like completions.) The buffer text could be changed in the meantime, but document contains the buffer
document like it was at the start of the auto suggestion call. So, from here, don’t access buffer. text, but
use document . text instead.

Parameters
¢ buffer — The Buffer instance.

¢ document — The Document instance.

